Loading…
Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide
Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonst...
Saved in:
Published in: | arXiv.org 2015-04 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Ming Chang-Ling, Zou Xi-Feng, Ren Xiong, Xiao Yong-Jing, Cai Guo-Ping, Guo Li-Min, Tong Guo, Guang-Can |
description | Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state {\Phi}+. Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495+/-0.147 > 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection. |
doi_str_mv | 10.48550/arxiv.1408.2409 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081526280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081526280</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510-9a56fc7d197e79009fc2fe26b016ca04d1fca0b74cbee7f268be330b5a08238e3</originalsourceid><addsrcrecordid>eNotjc9LwzAYQIMgOObuHgOeO798adr0KGM6YWiFgsfxtU1mRpto0w71r3f-OL3L4z3GrgQsU60U3NDw4Y5LkYJeYgrFGZuhlCLRKeIFW8R4AADMclRKzlhbDeRj72J0wfNgefkaxuBdw58n8uPU8zJ0NLgvGn-EtR_J7zvTGz9y5znxR_IhNtQZvvmsB9fysqPY_xZe6Gj2k2vNJTu31EWz-OecVXfrarVJtk_3D6vbbUJKQFKQymyTt6LITV4AFLZBazCrQWQNQdoKe0Kdp01tTG4x07WREmpFoFFqI-fs-i_7NoT3ycRxdwjT4E_HHYIWCjPUIL8BGcRYxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081526280</pqid></control><display><type>article</type><title>Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide</title><source>Publicly Available Content Database</source><creator>Li, Ming ; Chang-Ling, Zou ; Xi-Feng, Ren ; Xiong, Xiao ; Yong-Jing, Cai ; Guo-Ping, Guo ; Li-Min, Tong ; Guo, Guang-Can</creator><creatorcontrib>Li, Ming ; Chang-Ling, Zou ; Xi-Feng, Ren ; Xiong, Xiao ; Yong-Jing, Cai ; Guo-Ping, Guo ; Li-Min, Tong ; Guo, Guang-Can</creatorcontrib><description>Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state {\Phi}+. Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495+/-0.147 > 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1408.2409</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Nanowires ; Photonics ; Photons ; Polarization ; Quantum entanglement ; Quantum optics ; Quantum phenomena ; Quantum theory ; Spatial resolution</subject><ispartof>arXiv.org, 2015-04</ispartof><rights>2015. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2081526280?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Chang-Ling, Zou</creatorcontrib><creatorcontrib>Xi-Feng, Ren</creatorcontrib><creatorcontrib>Xiong, Xiao</creatorcontrib><creatorcontrib>Yong-Jing, Cai</creatorcontrib><creatorcontrib>Guo-Ping, Guo</creatorcontrib><creatorcontrib>Li-Min, Tong</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><title>Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide</title><title>arXiv.org</title><description>Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state {\Phi}+. Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495+/-0.147 > 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection.</description><subject>Nanowires</subject><subject>Photonics</subject><subject>Photons</subject><subject>Polarization</subject><subject>Quantum entanglement</subject><subject>Quantum optics</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Spatial resolution</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc9LwzAYQIMgOObuHgOeO798adr0KGM6YWiFgsfxtU1mRpto0w71r3f-OL3L4z3GrgQsU60U3NDw4Y5LkYJeYgrFGZuhlCLRKeIFW8R4AADMclRKzlhbDeRj72J0wfNgefkaxuBdw58n8uPU8zJ0NLgvGn-EtR_J7zvTGz9y5znxR_IhNtQZvvmsB9fysqPY_xZe6Gj2k2vNJTu31EWz-OecVXfrarVJtk_3D6vbbUJKQFKQymyTt6LITV4AFLZBazCrQWQNQdoKe0Kdp01tTG4x07WREmpFoFFqI-fs-i_7NoT3ycRxdwjT4E_HHYIWCjPUIL8BGcRYxg</recordid><startdate>20150409</startdate><enddate>20150409</enddate><creator>Li, Ming</creator><creator>Chang-Ling, Zou</creator><creator>Xi-Feng, Ren</creator><creator>Xiong, Xiao</creator><creator>Yong-Jing, Cai</creator><creator>Guo-Ping, Guo</creator><creator>Li-Min, Tong</creator><creator>Guo, Guang-Can</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150409</creationdate><title>Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide</title><author>Li, Ming ; Chang-Ling, Zou ; Xi-Feng, Ren ; Xiong, Xiao ; Yong-Jing, Cai ; Guo-Ping, Guo ; Li-Min, Tong ; Guo, Guang-Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510-9a56fc7d197e79009fc2fe26b016ca04d1fca0b74cbee7f268be330b5a08238e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Nanowires</topic><topic>Photonics</topic><topic>Photons</topic><topic>Polarization</topic><topic>Quantum entanglement</topic><topic>Quantum optics</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Spatial resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Chang-Ling, Zou</creatorcontrib><creatorcontrib>Xi-Feng, Ren</creatorcontrib><creatorcontrib>Xiong, Xiao</creatorcontrib><creatorcontrib>Yong-Jing, Cai</creatorcontrib><creatorcontrib>Guo-Ping, Guo</creatorcontrib><creatorcontrib>Li-Min, Tong</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ming</au><au>Chang-Ling, Zou</au><au>Xi-Feng, Ren</au><au>Xiong, Xiao</au><au>Yong-Jing, Cai</au><au>Guo-Ping, Guo</au><au>Li-Min, Tong</au><au>Guo, Guang-Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide</atitle><jtitle>arXiv.org</jtitle><date>2015-04-09</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state {\Phi}+. Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495+/-0.147 > 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1408.2409</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081526280 |
source | Publicly Available Content Database |
subjects | Nanowires Photonics Photons Polarization Quantum entanglement Quantum optics Quantum phenomena Quantum theory Spatial resolution |
title | Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transmission%20of%20Photonic%20Quantum%20Polarization%20Entanglement%20in%20a%20Nanoscale%20Hybrid%20Plasmonic%20Waveguide&rft.jtitle=arXiv.org&rft.au=Li,%20Ming&rft.date=2015-04-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1408.2409&rft_dat=%3Cproquest%3E2081526280%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a510-9a56fc7d197e79009fc2fe26b016ca04d1fca0b74cbee7f268be330b5a08238e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2081526280&rft_id=info:pmid/&rfr_iscdi=true |