Loading…

Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide

Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonst...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-04
Main Authors: Li, Ming, Chang-Ling, Zou, Xi-Feng, Ren, Xiong, Xiao, Yong-Jing, Cai, Guo-Ping, Guo, Li-Min, Tong, Guo, Guang-Can
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Ming
Chang-Ling, Zou
Xi-Feng, Ren
Xiong, Xiao
Yong-Jing, Cai
Guo-Ping, Guo
Li-Min, Tong
Guo, Guang-Can
description Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state {\Phi}+. Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495+/-0.147 > 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection.
doi_str_mv 10.48550/arxiv.1408.2409
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081526280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081526280</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510-9a56fc7d197e79009fc2fe26b016ca04d1fca0b74cbee7f268be330b5a08238e3</originalsourceid><addsrcrecordid>eNotjc9LwzAYQIMgOObuHgOeO798adr0KGM6YWiFgsfxtU1mRpto0w71r3f-OL3L4z3GrgQsU60U3NDw4Y5LkYJeYgrFGZuhlCLRKeIFW8R4AADMclRKzlhbDeRj72J0wfNgefkaxuBdw58n8uPU8zJ0NLgvGn-EtR_J7zvTGz9y5znxR_IhNtQZvvmsB9fysqPY_xZe6Gj2k2vNJTu31EWz-OecVXfrarVJtk_3D6vbbUJKQFKQymyTt6LITV4AFLZBazCrQWQNQdoKe0Kdp01tTG4x07WREmpFoFFqI-fs-i_7NoT3ycRxdwjT4E_HHYIWCjPUIL8BGcRYxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081526280</pqid></control><display><type>article</type><title>Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide</title><source>Publicly Available Content Database</source><creator>Li, Ming ; Chang-Ling, Zou ; Xi-Feng, Ren ; Xiong, Xiao ; Yong-Jing, Cai ; Guo-Ping, Guo ; Li-Min, Tong ; Guo, Guang-Can</creator><creatorcontrib>Li, Ming ; Chang-Ling, Zou ; Xi-Feng, Ren ; Xiong, Xiao ; Yong-Jing, Cai ; Guo-Ping, Guo ; Li-Min, Tong ; Guo, Guang-Can</creatorcontrib><description>Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state {\Phi}+. Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495+/-0.147 &gt; 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1408.2409</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Nanowires ; Photonics ; Photons ; Polarization ; Quantum entanglement ; Quantum optics ; Quantum phenomena ; Quantum theory ; Spatial resolution</subject><ispartof>arXiv.org, 2015-04</ispartof><rights>2015. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2081526280?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Chang-Ling, Zou</creatorcontrib><creatorcontrib>Xi-Feng, Ren</creatorcontrib><creatorcontrib>Xiong, Xiao</creatorcontrib><creatorcontrib>Yong-Jing, Cai</creatorcontrib><creatorcontrib>Guo-Ping, Guo</creatorcontrib><creatorcontrib>Li-Min, Tong</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><title>Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide</title><title>arXiv.org</title><description>Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state {\Phi}+. Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495+/-0.147 &gt; 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection.</description><subject>Nanowires</subject><subject>Photonics</subject><subject>Photons</subject><subject>Polarization</subject><subject>Quantum entanglement</subject><subject>Quantum optics</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Spatial resolution</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc9LwzAYQIMgOObuHgOeO798adr0KGM6YWiFgsfxtU1mRpto0w71r3f-OL3L4z3GrgQsU60U3NDw4Y5LkYJeYgrFGZuhlCLRKeIFW8R4AADMclRKzlhbDeRj72J0wfNgefkaxuBdw58n8uPU8zJ0NLgvGn-EtR_J7zvTGz9y5znxR_IhNtQZvvmsB9fysqPY_xZe6Gj2k2vNJTu31EWz-OecVXfrarVJtk_3D6vbbUJKQFKQymyTt6LITV4AFLZBazCrQWQNQdoKe0Kdp01tTG4x07WREmpFoFFqI-fs-i_7NoT3ycRxdwjT4E_HHYIWCjPUIL8BGcRYxg</recordid><startdate>20150409</startdate><enddate>20150409</enddate><creator>Li, Ming</creator><creator>Chang-Ling, Zou</creator><creator>Xi-Feng, Ren</creator><creator>Xiong, Xiao</creator><creator>Yong-Jing, Cai</creator><creator>Guo-Ping, Guo</creator><creator>Li-Min, Tong</creator><creator>Guo, Guang-Can</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150409</creationdate><title>Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide</title><author>Li, Ming ; Chang-Ling, Zou ; Xi-Feng, Ren ; Xiong, Xiao ; Yong-Jing, Cai ; Guo-Ping, Guo ; Li-Min, Tong ; Guo, Guang-Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510-9a56fc7d197e79009fc2fe26b016ca04d1fca0b74cbee7f268be330b5a08238e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Nanowires</topic><topic>Photonics</topic><topic>Photons</topic><topic>Polarization</topic><topic>Quantum entanglement</topic><topic>Quantum optics</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Spatial resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Chang-Ling, Zou</creatorcontrib><creatorcontrib>Xi-Feng, Ren</creatorcontrib><creatorcontrib>Xiong, Xiao</creatorcontrib><creatorcontrib>Yong-Jing, Cai</creatorcontrib><creatorcontrib>Guo-Ping, Guo</creatorcontrib><creatorcontrib>Li-Min, Tong</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ming</au><au>Chang-Ling, Zou</au><au>Xi-Feng, Ren</au><au>Xiong, Xiao</au><au>Yong-Jing, Cai</au><au>Guo-Ping, Guo</au><au>Li-Min, Tong</au><au>Guo, Guang-Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide</atitle><jtitle>arXiv.org</jtitle><date>2015-04-09</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state {\Phi}+. Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495+/-0.147 &gt; 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1408.2409</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081526280
source Publicly Available Content Database
subjects Nanowires
Photonics
Photons
Polarization
Quantum entanglement
Quantum optics
Quantum phenomena
Quantum theory
Spatial resolution
title Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transmission%20of%20Photonic%20Quantum%20Polarization%20Entanglement%20in%20a%20Nanoscale%20Hybrid%20Plasmonic%20Waveguide&rft.jtitle=arXiv.org&rft.au=Li,%20Ming&rft.date=2015-04-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1408.2409&rft_dat=%3Cproquest%3E2081526280%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a510-9a56fc7d197e79009fc2fe26b016ca04d1fca0b74cbee7f268be330b5a08238e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2081526280&rft_id=info:pmid/&rfr_iscdi=true