Loading…
Geometrical Characterization of RN-operators between Locally Convex Vector Spaces
For locally convex vector spaces (l.c.v.s.) \(E\) and \(F\) and for linear and continuous operator \(T: E \rightarrow F\) and for an absolutely convex neighborhood \(V\) of zero in \(F\), a bounded subset \(B\) of \(E\) is said to be \(T\)-V-dentable (respectively, \(T\)-V-s-dentable, respectively,...
Saved in:
Published in: | arXiv.org 2015-02 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Reinov, Oleg Asfand Fahad |
description | For locally convex vector spaces (l.c.v.s.) \(E\) and \(F\) and for linear and continuous operator \(T: E \rightarrow F\) and for an absolutely convex neighborhood \(V\) of zero in \(F\), a bounded subset \(B\) of \(E\) is said to be \(T\)-V-dentable (respectively, \(T\)-V-s-dentable, respectively, \(T\)-V-f-dentable) if for any \(\epsilon>0\) there exists an \(x\in B\) so that \( x\notin \overline{co} (B\setminus T^{-1}(T(x)+\epsilon V))\) (respectively, so that \( x\notin s\)-\(co (B\setminus T^{-1}(T(x)+\epsilon V)),\) respectively, so that \( x\notin {co} (B\setminus T^{-1}(T(x)+\epsilon V)) ). \) Moreover, \(B\) is called \(T\)-dentable (respectively, \(T\)-s-dentable, \(T\)-f-dentable) if it is \(T\)-V-dentable (respectively, \(T\)-V-s-dentable, \(T\)-V-f-dentable) for every absolutely convex neighborhood \(V\) of zero in \(F.\) RN-operators between locally convex vector spaces have been introduced in [5]. We present a theorem which says that, for a large class of l.c.v.s. \(E, F,\) if \(T: E \rightarrow F\) is a linear continuous map, then the following are equivalent: 1) \(T \in RN(E,F);\) 2) Each bounded set in \(E\) is \(T\)-dentable; 3) Each bounded set in \(E\) is \(T\)-s-dentable; 4) Each bounded set in \(E\) is \(T\)-\(f\)-dentable. Therefore, we have a generalization of Theorem 1 in [8], which gave a geometric characterization of RN-operators between Banach spaces. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081618624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081618624</sourcerecordid><originalsourceid>FETCH-proquest_journals_20816186243</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwLqRJW7sXL4MIXnAtMZxiS82pSert6e3gAzj9w_ePWCCkjKM8EWLCQucazrnIFiJNZcD2a6Qbeltr1UJxVVZpj7b-KF-TAargsIuoQ6s8WQcX9E9EA1sa9vYNBZkHvuCMemA4dkqjm7FxpVqH4a9TNl8tT8Um6izde3S-bKi3ZqBS8DzO4jwTifzv-gLXwz-Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081618624</pqid></control><display><type>article</type><title>Geometrical Characterization of RN-operators between Locally Convex Vector Spaces</title><source>Publicly Available Content Database</source><creator>Reinov, Oleg ; Asfand Fahad</creator><creatorcontrib>Reinov, Oleg ; Asfand Fahad</creatorcontrib><description>For locally convex vector spaces (l.c.v.s.) \(E\) and \(F\) and for linear and continuous operator \(T: E \rightarrow F\) and for an absolutely convex neighborhood \(V\) of zero in \(F\), a bounded subset \(B\) of \(E\) is said to be \(T\)-V-dentable (respectively, \(T\)-V-s-dentable, respectively, \(T\)-V-f-dentable) if for any \(\epsilon>0\) there exists an \(x\in B\) so that \( x\notin \overline{co} (B\setminus T^{-1}(T(x)+\epsilon V))\) (respectively, so that \( x\notin s\)-\(co (B\setminus T^{-1}(T(x)+\epsilon V)),\) respectively, so that \( x\notin {co} (B\setminus T^{-1}(T(x)+\epsilon V)) ). \) Moreover, \(B\) is called \(T\)-dentable (respectively, \(T\)-s-dentable, \(T\)-f-dentable) if it is \(T\)-V-dentable (respectively, \(T\)-V-s-dentable, \(T\)-V-f-dentable) for every absolutely convex neighborhood \(V\) of zero in \(F.\) RN-operators between locally convex vector spaces have been introduced in [5]. We present a theorem which says that, for a large class of l.c.v.s. \(E, F,\) if \(T: E \rightarrow F\) is a linear continuous map, then the following are equivalent: 1) \(T \in RN(E,F);\) 2) Each bounded set in \(E\) is \(T\)-dentable; 3) Each bounded set in \(E\) is \(T\)-s-dentable; 4) Each bounded set in \(E\) is \(T\)-\(f\)-dentable. Therefore, we have a generalization of Theorem 1 in [8], which gave a geometric characterization of RN-operators between Banach spaces.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Banach spaces ; Operators (mathematics) ; Theorems ; Vector spaces</subject><ispartof>arXiv.org, 2015-02</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2081618624?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Reinov, Oleg</creatorcontrib><creatorcontrib>Asfand Fahad</creatorcontrib><title>Geometrical Characterization of RN-operators between Locally Convex Vector Spaces</title><title>arXiv.org</title><description>For locally convex vector spaces (l.c.v.s.) \(E\) and \(F\) and for linear and continuous operator \(T: E \rightarrow F\) and for an absolutely convex neighborhood \(V\) of zero in \(F\), a bounded subset \(B\) of \(E\) is said to be \(T\)-V-dentable (respectively, \(T\)-V-s-dentable, respectively, \(T\)-V-f-dentable) if for any \(\epsilon>0\) there exists an \(x\in B\) so that \( x\notin \overline{co} (B\setminus T^{-1}(T(x)+\epsilon V))\) (respectively, so that \( x\notin s\)-\(co (B\setminus T^{-1}(T(x)+\epsilon V)),\) respectively, so that \( x\notin {co} (B\setminus T^{-1}(T(x)+\epsilon V)) ). \) Moreover, \(B\) is called \(T\)-dentable (respectively, \(T\)-s-dentable, \(T\)-f-dentable) if it is \(T\)-V-dentable (respectively, \(T\)-V-s-dentable, \(T\)-V-f-dentable) for every absolutely convex neighborhood \(V\) of zero in \(F.\) RN-operators between locally convex vector spaces have been introduced in [5]. We present a theorem which says that, for a large class of l.c.v.s. \(E, F,\) if \(T: E \rightarrow F\) is a linear continuous map, then the following are equivalent: 1) \(T \in RN(E,F);\) 2) Each bounded set in \(E\) is \(T\)-dentable; 3) Each bounded set in \(E\) is \(T\)-s-dentable; 4) Each bounded set in \(E\) is \(T\)-\(f\)-dentable. Therefore, we have a generalization of Theorem 1 in [8], which gave a geometric characterization of RN-operators between Banach spaces.</description><subject>Banach spaces</subject><subject>Operators (mathematics)</subject><subject>Theorems</subject><subject>Vector spaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwLqRJW7sXL4MIXnAtMZxiS82pSert6e3gAzj9w_ePWCCkjKM8EWLCQucazrnIFiJNZcD2a6Qbeltr1UJxVVZpj7b-KF-TAargsIuoQ6s8WQcX9E9EA1sa9vYNBZkHvuCMemA4dkqjm7FxpVqH4a9TNl8tT8Um6izde3S-bKi3ZqBS8DzO4jwTifzv-gLXwz-Z</recordid><startdate>20150212</startdate><enddate>20150212</enddate><creator>Reinov, Oleg</creator><creator>Asfand Fahad</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20150212</creationdate><title>Geometrical Characterization of RN-operators between Locally Convex Vector Spaces</title><author>Reinov, Oleg ; Asfand Fahad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20816186243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Banach spaces</topic><topic>Operators (mathematics)</topic><topic>Theorems</topic><topic>Vector spaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Reinov, Oleg</creatorcontrib><creatorcontrib>Asfand Fahad</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinov, Oleg</au><au>Asfand Fahad</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Geometrical Characterization of RN-operators between Locally Convex Vector Spaces</atitle><jtitle>arXiv.org</jtitle><date>2015-02-12</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>For locally convex vector spaces (l.c.v.s.) \(E\) and \(F\) and for linear and continuous operator \(T: E \rightarrow F\) and for an absolutely convex neighborhood \(V\) of zero in \(F\), a bounded subset \(B\) of \(E\) is said to be \(T\)-V-dentable (respectively, \(T\)-V-s-dentable, respectively, \(T\)-V-f-dentable) if for any \(\epsilon>0\) there exists an \(x\in B\) so that \( x\notin \overline{co} (B\setminus T^{-1}(T(x)+\epsilon V))\) (respectively, so that \( x\notin s\)-\(co (B\setminus T^{-1}(T(x)+\epsilon V)),\) respectively, so that \( x\notin {co} (B\setminus T^{-1}(T(x)+\epsilon V)) ). \) Moreover, \(B\) is called \(T\)-dentable (respectively, \(T\)-s-dentable, \(T\)-f-dentable) if it is \(T\)-V-dentable (respectively, \(T\)-V-s-dentable, \(T\)-V-f-dentable) for every absolutely convex neighborhood \(V\) of zero in \(F.\) RN-operators between locally convex vector spaces have been introduced in [5]. We present a theorem which says that, for a large class of l.c.v.s. \(E, F,\) if \(T: E \rightarrow F\) is a linear continuous map, then the following are equivalent: 1) \(T \in RN(E,F);\) 2) Each bounded set in \(E\) is \(T\)-dentable; 3) Each bounded set in \(E\) is \(T\)-s-dentable; 4) Each bounded set in \(E\) is \(T\)-\(f\)-dentable. Therefore, we have a generalization of Theorem 1 in [8], which gave a geometric characterization of RN-operators between Banach spaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081618624 |
source | Publicly Available Content Database |
subjects | Banach spaces Operators (mathematics) Theorems Vector spaces |
title | Geometrical Characterization of RN-operators between Locally Convex Vector Spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Geometrical%20Characterization%20of%20RN-operators%20between%20Locally%20Convex%20Vector%20Spaces&rft.jtitle=arXiv.org&rft.au=Reinov,%20Oleg&rft.date=2015-02-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081618624%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20816186243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2081618624&rft_id=info:pmid/&rfr_iscdi=true |