Loading…

Geochemistry of silicic magmas in the Macolod Corridor, SW Luzon, Philippines: evidence of distinct, mantle-derived, crustal sources for silicic magmas

Silicic volcanic deposits (>65 wt% SiO2), which occur as domes, lavas and pyroclastic deposits, are relatively abundant in the Macolod Corridor, SW Luzon, Philippines. At Makiling stratovolcano, silicic domes occur along the margins of the volcano and are chemically similar to the silicic lavas t...

Full description

Saved in:
Bibliographic Details
Published in:Contributions to mineralogy and petrology 2006-03, Vol.151 (3), p.267-281
Main Authors: Vogel, Thomas A., Flood, Timothy P., Patino, Lina C., Wilmot, Melissa S., Maximo, Raymond Patrick R., Arpa, Carmencita B., Arcilla, Carlo A., Stimac, James A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silicic volcanic deposits (>65 wt% SiO2), which occur as domes, lavas and pyroclastic deposits, are relatively abundant in the Macolod Corridor, SW Luzon, Philippines. At Makiling stratovolcano, silicic domes occur along the margins of the volcano and are chemically similar to the silicic lavas that comprise part of the volcano. Pyroclastic flows are associated with the Laguna de Bay Caldera and these are chemically distinct from the domes and lavas at Makiling stratovolcano. As a whole, samples from the Laguna de Bay Caldera contain lower concentrations of MgO and higher concentrations of Fe2O3(t) than the samples from domes and lavas. The Laguna de Bay samples are more enriched in incompatible trace elements. The silicic rocks from the domes, Makiling Volcano and Laguna de Bay Caldera all contain high alkalis and high K2O/Na2O ratios. Melting experiments of primitive basalts and andesites demonstrate that it is difficult to produce high K2O/Na2O silicic magmas by fractional crystallization or partial melting of a low K2O/Na2O source. However, recent melting experiments (Sisson et al., Contrib Mineral Petrol 148:635-661, 2005) demonstrate that extreme fractional crystallization or partial melting of K-rich basalts can produce these silicic magmas. Our model for the generation of the silicic magmas in the Macolod Corridor requires partial melting of mantle-derived, evolved, moderate to K-rich, crystallized calc-alkaline magmas that ponded and crystallized in the mid-crust. Major and trace element variations, along with oxygen isotopes and ages of the deposits, are consistent with this model. [PUBLICATION ABSTRACT]
ISSN:0010-7999
1432-0967
DOI:10.1007/s00410-005-0050-7