Loading…
Rotation set and Entropy
In 1991 Llibre and MacKay proved that if \(f\) is a 2-torus homeomorphism isotopic to identity and the rotation set of \(f\) has a non empty interior then \(f\) has positive topological entropy. Here, we give a converselike theorem. We show that the interior of the rotation set of a 2-torus \(C^{1+...
Saved in:
Published in: | arXiv.org 2009-04 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Heber Enrich Guelman, Nancy Larcanché, Audrey Liousse, Isabelle |
description | In 1991 Llibre and MacKay proved that if \(f\) is a 2-torus homeomorphism isotopic to identity and the rotation set of \(f\) has a non empty interior then \(f\) has positive topological entropy. Here, we give a converselike theorem. We show that the interior of the rotation set of a 2-torus \(C^{1+ \alpha}\) diffeomorphism isotopic to identity of positive topological entropy is not empty, under the additional hypotheses that \(f\) is topologically transitive and irreducible. We also give examples that show that these hypotheses are necessary. |
doi_str_mv | 10.48550/arxiv.0711.4728 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081701480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081701480</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510-ed85e16ca00394b3f06cbac0c9ec3adb0880eecca543519192027810d5b3cb5d3</originalsourceid><addsrcrecordid>eNotzUtLAzEUQOFQECy1-y4Hup7xPnInmaWU-oCCIN2XvAotMqmTVPTfK-jq7L6j1Aqh01YE7t30dfrswCB22pCdqTkxY2s10a1alnIGAOoNifBcrd5ydfWUx6ak2rgxNtuxTvnyfaduju69pOV_F2r_uN1vntvd69PL5mHXOkFoU7SSsA8OgAft-Qh98C5AGFJgFz1YCymF4ESz4IADARmLEMVz8BJ5odZ_7GXKH9dU6uGcr9P4ezwQWDSA2gL_AKQaO74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081701480</pqid></control><display><type>article</type><title>Rotation set and Entropy</title><source>Publicly Available Content Database</source><creator>Heber Enrich ; Guelman, Nancy ; Larcanché, Audrey ; Liousse, Isabelle</creator><creatorcontrib>Heber Enrich ; Guelman, Nancy ; Larcanché, Audrey ; Liousse, Isabelle</creatorcontrib><description>In 1991 Llibre and MacKay proved that if \(f\) is a 2-torus homeomorphism isotopic to identity and the rotation set of \(f\) has a non empty interior then \(f\) has positive topological entropy. Here, we give a converselike theorem. We show that the interior of the rotation set of a 2-torus \(C^{1+ \alpha}\) diffeomorphism isotopic to identity of positive topological entropy is not empty, under the additional hypotheses that \(f\) is topologically transitive and irreducible. We also give examples that show that these hypotheses are necessary.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0711.4728</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Entropy ; Hypotheses ; Isomorphism ; Rotation ; Topology ; Toruses</subject><ispartof>arXiv.org, 2009-04</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2081701480?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Heber Enrich</creatorcontrib><creatorcontrib>Guelman, Nancy</creatorcontrib><creatorcontrib>Larcanché, Audrey</creatorcontrib><creatorcontrib>Liousse, Isabelle</creatorcontrib><title>Rotation set and Entropy</title><title>arXiv.org</title><description>In 1991 Llibre and MacKay proved that if \(f\) is a 2-torus homeomorphism isotopic to identity and the rotation set of \(f\) has a non empty interior then \(f\) has positive topological entropy. Here, we give a converselike theorem. We show that the interior of the rotation set of a 2-torus \(C^{1+ \alpha}\) diffeomorphism isotopic to identity of positive topological entropy is not empty, under the additional hypotheses that \(f\) is topologically transitive and irreducible. We also give examples that show that these hypotheses are necessary.</description><subject>Entropy</subject><subject>Hypotheses</subject><subject>Isomorphism</subject><subject>Rotation</subject><subject>Topology</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzUtLAzEUQOFQECy1-y4Hup7xPnInmaWU-oCCIN2XvAotMqmTVPTfK-jq7L6j1Aqh01YE7t30dfrswCB22pCdqTkxY2s10a1alnIGAOoNifBcrd5ydfWUx6ak2rgxNtuxTvnyfaduju69pOV_F2r_uN1vntvd69PL5mHXOkFoU7SSsA8OgAft-Qh98C5AGFJgFz1YCymF4ESz4IADARmLEMVz8BJ5odZ_7GXKH9dU6uGcr9P4ezwQWDSA2gL_AKQaO74</recordid><startdate>20090425</startdate><enddate>20090425</enddate><creator>Heber Enrich</creator><creator>Guelman, Nancy</creator><creator>Larcanché, Audrey</creator><creator>Liousse, Isabelle</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090425</creationdate><title>Rotation set and Entropy</title><author>Heber Enrich ; Guelman, Nancy ; Larcanché, Audrey ; Liousse, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510-ed85e16ca00394b3f06cbac0c9ec3adb0880eecca543519192027810d5b3cb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Entropy</topic><topic>Hypotheses</topic><topic>Isomorphism</topic><topic>Rotation</topic><topic>Topology</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Heber Enrich</creatorcontrib><creatorcontrib>Guelman, Nancy</creatorcontrib><creatorcontrib>Larcanché, Audrey</creatorcontrib><creatorcontrib>Liousse, Isabelle</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heber Enrich</au><au>Guelman, Nancy</au><au>Larcanché, Audrey</au><au>Liousse, Isabelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotation set and Entropy</atitle><jtitle>arXiv.org</jtitle><date>2009-04-25</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>In 1991 Llibre and MacKay proved that if \(f\) is a 2-torus homeomorphism isotopic to identity and the rotation set of \(f\) has a non empty interior then \(f\) has positive topological entropy. Here, we give a converselike theorem. We show that the interior of the rotation set of a 2-torus \(C^{1+ \alpha}\) diffeomorphism isotopic to identity of positive topological entropy is not empty, under the additional hypotheses that \(f\) is topologically transitive and irreducible. We also give examples that show that these hypotheses are necessary.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0711.4728</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2009-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081701480 |
source | Publicly Available Content Database |
subjects | Entropy Hypotheses Isomorphism Rotation Topology Toruses |
title | Rotation set and Entropy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotation%20set%20and%20Entropy&rft.jtitle=arXiv.org&rft.au=Heber%20Enrich&rft.date=2009-04-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0711.4728&rft_dat=%3Cproquest%3E2081701480%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a510-ed85e16ca00394b3f06cbac0c9ec3adb0880eecca543519192027810d5b3cb5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2081701480&rft_id=info:pmid/&rfr_iscdi=true |