Loading…

Rotation set and Entropy

In 1991 Llibre and MacKay proved that if \(f\) is a 2-torus homeomorphism isotopic to identity and the rotation set of \(f\) has a non empty interior then \(f\) has positive topological entropy. Here, we give a converselike theorem. We show that the interior of the rotation set of a 2-torus \(C^{1+...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2009-04
Main Authors: Heber Enrich, Guelman, Nancy, Larcanché, Audrey, Liousse, Isabelle
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Heber Enrich
Guelman, Nancy
Larcanché, Audrey
Liousse, Isabelle
description In 1991 Llibre and MacKay proved that if \(f\) is a 2-torus homeomorphism isotopic to identity and the rotation set of \(f\) has a non empty interior then \(f\) has positive topological entropy. Here, we give a converselike theorem. We show that the interior of the rotation set of a 2-torus \(C^{1+ \alpha}\) diffeomorphism isotopic to identity of positive topological entropy is not empty, under the additional hypotheses that \(f\) is topologically transitive and irreducible. We also give examples that show that these hypotheses are necessary.
doi_str_mv 10.48550/arxiv.0711.4728
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081701480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081701480</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510-ed85e16ca00394b3f06cbac0c9ec3adb0880eecca543519192027810d5b3cb5d3</originalsourceid><addsrcrecordid>eNotzUtLAzEUQOFQECy1-y4Hup7xPnInmaWU-oCCIN2XvAotMqmTVPTfK-jq7L6j1Aqh01YE7t30dfrswCB22pCdqTkxY2s10a1alnIGAOoNifBcrd5ydfWUx6ak2rgxNtuxTvnyfaduju69pOV_F2r_uN1vntvd69PL5mHXOkFoU7SSsA8OgAft-Qh98C5AGFJgFz1YCymF4ESz4IADARmLEMVz8BJ5odZ_7GXKH9dU6uGcr9P4ezwQWDSA2gL_AKQaO74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081701480</pqid></control><display><type>article</type><title>Rotation set and Entropy</title><source>Publicly Available Content Database</source><creator>Heber Enrich ; Guelman, Nancy ; Larcanché, Audrey ; Liousse, Isabelle</creator><creatorcontrib>Heber Enrich ; Guelman, Nancy ; Larcanché, Audrey ; Liousse, Isabelle</creatorcontrib><description>In 1991 Llibre and MacKay proved that if \(f\) is a 2-torus homeomorphism isotopic to identity and the rotation set of \(f\) has a non empty interior then \(f\) has positive topological entropy. Here, we give a converselike theorem. We show that the interior of the rotation set of a 2-torus \(C^{1+ \alpha}\) diffeomorphism isotopic to identity of positive topological entropy is not empty, under the additional hypotheses that \(f\) is topologically transitive and irreducible. We also give examples that show that these hypotheses are necessary.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0711.4728</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Entropy ; Hypotheses ; Isomorphism ; Rotation ; Topology ; Toruses</subject><ispartof>arXiv.org, 2009-04</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2081701480?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Heber Enrich</creatorcontrib><creatorcontrib>Guelman, Nancy</creatorcontrib><creatorcontrib>Larcanché, Audrey</creatorcontrib><creatorcontrib>Liousse, Isabelle</creatorcontrib><title>Rotation set and Entropy</title><title>arXiv.org</title><description>In 1991 Llibre and MacKay proved that if \(f\) is a 2-torus homeomorphism isotopic to identity and the rotation set of \(f\) has a non empty interior then \(f\) has positive topological entropy. Here, we give a converselike theorem. We show that the interior of the rotation set of a 2-torus \(C^{1+ \alpha}\) diffeomorphism isotopic to identity of positive topological entropy is not empty, under the additional hypotheses that \(f\) is topologically transitive and irreducible. We also give examples that show that these hypotheses are necessary.</description><subject>Entropy</subject><subject>Hypotheses</subject><subject>Isomorphism</subject><subject>Rotation</subject><subject>Topology</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzUtLAzEUQOFQECy1-y4Hup7xPnInmaWU-oCCIN2XvAotMqmTVPTfK-jq7L6j1Aqh01YE7t30dfrswCB22pCdqTkxY2s10a1alnIGAOoNifBcrd5ydfWUx6ak2rgxNtuxTvnyfaduju69pOV_F2r_uN1vntvd69PL5mHXOkFoU7SSsA8OgAft-Qh98C5AGFJgFz1YCymF4ESz4IADARmLEMVz8BJ5odZ_7GXKH9dU6uGcr9P4ezwQWDSA2gL_AKQaO74</recordid><startdate>20090425</startdate><enddate>20090425</enddate><creator>Heber Enrich</creator><creator>Guelman, Nancy</creator><creator>Larcanché, Audrey</creator><creator>Liousse, Isabelle</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090425</creationdate><title>Rotation set and Entropy</title><author>Heber Enrich ; Guelman, Nancy ; Larcanché, Audrey ; Liousse, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510-ed85e16ca00394b3f06cbac0c9ec3adb0880eecca543519192027810d5b3cb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Entropy</topic><topic>Hypotheses</topic><topic>Isomorphism</topic><topic>Rotation</topic><topic>Topology</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Heber Enrich</creatorcontrib><creatorcontrib>Guelman, Nancy</creatorcontrib><creatorcontrib>Larcanché, Audrey</creatorcontrib><creatorcontrib>Liousse, Isabelle</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heber Enrich</au><au>Guelman, Nancy</au><au>Larcanché, Audrey</au><au>Liousse, Isabelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotation set and Entropy</atitle><jtitle>arXiv.org</jtitle><date>2009-04-25</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>In 1991 Llibre and MacKay proved that if \(f\) is a 2-torus homeomorphism isotopic to identity and the rotation set of \(f\) has a non empty interior then \(f\) has positive topological entropy. Here, we give a converselike theorem. We show that the interior of the rotation set of a 2-torus \(C^{1+ \alpha}\) diffeomorphism isotopic to identity of positive topological entropy is not empty, under the additional hypotheses that \(f\) is topologically transitive and irreducible. We also give examples that show that these hypotheses are necessary.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0711.4728</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2009-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081701480
source Publicly Available Content Database
subjects Entropy
Hypotheses
Isomorphism
Rotation
Topology
Toruses
title Rotation set and Entropy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotation%20set%20and%20Entropy&rft.jtitle=arXiv.org&rft.au=Heber%20Enrich&rft.date=2009-04-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0711.4728&rft_dat=%3Cproquest%3E2081701480%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a510-ed85e16ca00394b3f06cbac0c9ec3adb0880eecca543519192027810d5b3cb5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2081701480&rft_id=info:pmid/&rfr_iscdi=true