Loading…

Combining partially independent belief functions

The theory of belief functions manages uncertainty and also proposes a set of combination rules to aggregate opinions of several sources. Some combination rules mix evidential information where sources are independent; other rules are suited to combine evidential information held by dependent source...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-03
Main Authors: Chebbah, Mouna, Martin, Arnaud, Boutheina Ben Yaghlane
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chebbah, Mouna
Martin, Arnaud
Boutheina Ben Yaghlane
description The theory of belief functions manages uncertainty and also proposes a set of combination rules to aggregate opinions of several sources. Some combination rules mix evidential information where sources are independent; other rules are suited to combine evidential information held by dependent sources. In this paper we have two main contributions: First we suggest a method to quantify sources' degree of independence that may guide the choice of the more appropriate set of combination rules. Second, we propose a new combination rule that takes consideration of sources' degree of independence. The proposed method is illustrated on generated mass functions.
doi_str_mv 10.48550/arxiv.1503.05055
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081802517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081802517</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-4e9c6d89e7499fc69ba05d764078106503feedf303d15fff1f598d271ca2cf9a3</originalsourceid><addsrcrecordid>eNotjslqwzAURUWh0JDmA7ozdG33SfLTsCymEwSyyT7Ikl5QcGTXQ2n_voZ2c8_unMvYA4eqNojw5Mbv9FVxBFkBAuIN2wgpeWlqIe7YbpouACCUFohyw6Dpr23KKZ-LwY1zcl33U6Qc4hDXyXPRxi5FKmjJfk59nu7ZLbluirt_btnx9eXYvJf7w9tH87wvHQpd1tF6FYyNuraWvLKtAwxa1aANB7WeoxgDSZCBIxFxQmuC0Nw74ck6uWWPf9ph7D-XOM2nS7-MeS2eBBhuQCDX8hdyE0WD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081802517</pqid></control><display><type>article</type><title>Combining partially independent belief functions</title><source>Publicly Available Content Database</source><creator>Chebbah, Mouna ; Martin, Arnaud ; Boutheina Ben Yaghlane</creator><creatorcontrib>Chebbah, Mouna ; Martin, Arnaud ; Boutheina Ben Yaghlane</creatorcontrib><description>The theory of belief functions manages uncertainty and also proposes a set of combination rules to aggregate opinions of several sources. Some combination rules mix evidential information where sources are independent; other rules are suited to combine evidential information held by dependent sources. In this paper we have two main contributions: First we suggest a method to quantify sources' degree of independence that may guide the choice of the more appropriate set of combination rules. Second, we propose a new combination rule that takes consideration of sources' degree of independence. The proposed method is illustrated on generated mass functions.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1503.05055</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Information management</subject><ispartof>arXiv.org, 2015-03</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2081802517?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Chebbah, Mouna</creatorcontrib><creatorcontrib>Martin, Arnaud</creatorcontrib><creatorcontrib>Boutheina Ben Yaghlane</creatorcontrib><title>Combining partially independent belief functions</title><title>arXiv.org</title><description>The theory of belief functions manages uncertainty and also proposes a set of combination rules to aggregate opinions of several sources. Some combination rules mix evidential information where sources are independent; other rules are suited to combine evidential information held by dependent sources. In this paper we have two main contributions: First we suggest a method to quantify sources' degree of independence that may guide the choice of the more appropriate set of combination rules. Second, we propose a new combination rule that takes consideration of sources' degree of independence. The proposed method is illustrated on generated mass functions.</description><subject>Information management</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjslqwzAURUWh0JDmA7ozdG33SfLTsCymEwSyyT7Ikl5QcGTXQ2n_voZ2c8_unMvYA4eqNojw5Mbv9FVxBFkBAuIN2wgpeWlqIe7YbpouACCUFohyw6Dpr23KKZ-LwY1zcl33U6Qc4hDXyXPRxi5FKmjJfk59nu7ZLbluirt_btnx9eXYvJf7w9tH87wvHQpd1tF6FYyNuraWvLKtAwxa1aANB7WeoxgDSZCBIxFxQmuC0Nw74ck6uWWPf9ph7D-XOM2nS7-MeS2eBBhuQCDX8hdyE0WD</recordid><startdate>20150317</startdate><enddate>20150317</enddate><creator>Chebbah, Mouna</creator><creator>Martin, Arnaud</creator><creator>Boutheina Ben Yaghlane</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150317</creationdate><title>Combining partially independent belief functions</title><author>Chebbah, Mouna ; Martin, Arnaud ; Boutheina Ben Yaghlane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-4e9c6d89e7499fc69ba05d764078106503feedf303d15fff1f598d271ca2cf9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Information management</topic><toplevel>online_resources</toplevel><creatorcontrib>Chebbah, Mouna</creatorcontrib><creatorcontrib>Martin, Arnaud</creatorcontrib><creatorcontrib>Boutheina Ben Yaghlane</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chebbah, Mouna</au><au>Martin, Arnaud</au><au>Boutheina Ben Yaghlane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining partially independent belief functions</atitle><jtitle>arXiv.org</jtitle><date>2015-03-17</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>The theory of belief functions manages uncertainty and also proposes a set of combination rules to aggregate opinions of several sources. Some combination rules mix evidential information where sources are independent; other rules are suited to combine evidential information held by dependent sources. In this paper we have two main contributions: First we suggest a method to quantify sources' degree of independence that may guide the choice of the more appropriate set of combination rules. Second, we propose a new combination rule that takes consideration of sources' degree of independence. The proposed method is illustrated on generated mass functions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1503.05055</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2081802517
source Publicly Available Content Database
subjects Information management
title Combining partially independent belief functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20partially%20independent%20belief%20functions&rft.jtitle=arXiv.org&rft.au=Chebbah,%20Mouna&rft.date=2015-03-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1503.05055&rft_dat=%3Cproquest%3E2081802517%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-4e9c6d89e7499fc69ba05d764078106503feedf303d15fff1f598d271ca2cf9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2081802517&rft_id=info:pmid/&rfr_iscdi=true