Loading…

A thermodynamic model of Fe–Cr spinels

A new thermodynamic model for multi-component spinel solid solutions has been developed which takes into account thermodynamic consequences of cation mixing in spinel sublattices. It has been applied to the evaluation of thermodynamic functions of cation mixing and thermodynamic properties of Fe3O4-...

Full description

Saved in:
Bibliographic Details
Published in:Contributions to mineralogy and petrology 2005-07, Vol.149 (5), p.591-599
Main Author: Kurepin, Viktor A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3
cites cdi_FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3
container_end_page 599
container_issue 5
container_start_page 591
container_title Contributions to mineralogy and petrology
container_volume 149
creator Kurepin, Viktor A.
description A new thermodynamic model for multi-component spinel solid solutions has been developed which takes into account thermodynamic consequences of cation mixing in spinel sublattices. It has been applied to the evaluation of thermodynamic functions of cation mixing and thermodynamic properties of Fe3O4-FeCr2O4 spinels using intracrystalline cation distribution in magnetite, lattice parameters and activity-composition relations of magnetite-chromite solid solutions. According to the model, cation distribution in binary spinels, (Fe1-x2+ Fex3+)[Fex2+Fe2-2y-x3+Cr2y]O4, and their thermodynamic properties depend strongly on Fe2+-Cr3+ cation mixing. Mixing of Fe2+-Fe3+ and Fe3+-Cr3+ can be accepted as ideal. If Fe2+, Fe3+ and Cr are denoted as 1, 3 and 4 respectively, the equation of cation distribution is -RT ln(x2/((1-x)(2-2y-x)))= DeltaG13* + (1-2x)W13+y(W14-W13-W34) where DeltaG13* is the difference between the Gibbs energy of inverse and normal magnetite, Wij is a Margules parameter of cation mixing and DeltaG13*, J/mol =-23,000+13.4 T, W14=36 kJ/mol, W13=W34=0. The positive nonconfigurational Gibbs energy of mixing is the main reason for changing activity-composition relations with temperature. According to the model, the solvus in Fe3O4-FeCr2O4 spinel has a critical temperature close to 500 degrees C, which is consistent with mineralogical data.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00410-005-0669-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_208184809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>892209471</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3</originalsourceid><addsrcrecordid>eNotkM1KxDAUhYMoWEcfwF1x5SZ6k6b5WQ7FUWHAja5D0qTYoX8mncXsfAff0CcxpS4u517u4Rz4ELol8EAAxGMEYAQwQImBc4XZGcoIKygGxcU5ygDSVyilLtFVjAdIt1Rlhu63-fzpQz-602D6ts7T5rt8bPKd__3-qUIep3bwXbxGF43por_51w362D29Vy94__b8Wm332FBVzlgKa0tOOXjbeMYLWdepmQrDhLPLeOesI9Ioy1wtiCJUKgHUKeqY86bYoLs1dwrj19HHWR_GYxhSpaYgiWQSVDKR1VSHMcbgGz2FtjfhpAnohYdeeejEQy88NCv-AJqPUmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208184809</pqid></control><display><type>article</type><title>A thermodynamic model of Fe–Cr spinels</title><source>Springer Link</source><creator>Kurepin, Viktor A.</creator><creatorcontrib>Kurepin, Viktor A.</creatorcontrib><description>A new thermodynamic model for multi-component spinel solid solutions has been developed which takes into account thermodynamic consequences of cation mixing in spinel sublattices. It has been applied to the evaluation of thermodynamic functions of cation mixing and thermodynamic properties of Fe3O4-FeCr2O4 spinels using intracrystalline cation distribution in magnetite, lattice parameters and activity-composition relations of magnetite-chromite solid solutions. According to the model, cation distribution in binary spinels, (Fe1-x2+ Fex3+)[Fex2+Fe2-2y-x3+Cr2y]O4, and their thermodynamic properties depend strongly on Fe2+-Cr3+ cation mixing. Mixing of Fe2+-Fe3+ and Fe3+-Cr3+ can be accepted as ideal. If Fe2+, Fe3+ and Cr are denoted as 1, 3 and 4 respectively, the equation of cation distribution is -RT ln(x2/((1-x)(2-2y-x)))= DeltaG13* + (1-2x)W13+y(W14-W13-W34) where DeltaG13* is the difference between the Gibbs energy of inverse and normal magnetite, Wij is a Margules parameter of cation mixing and DeltaG13*, J/mol =-23,000+13.4 T, W14=36 kJ/mol, W13=W34=0. The positive nonconfigurational Gibbs energy of mixing is the main reason for changing activity-composition relations with temperature. According to the model, the solvus in Fe3O4-FeCr2O4 spinel has a critical temperature close to 500 degrees C, which is consistent with mineralogical data.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-005-0669-4</identifier><identifier>CODEN: CMPEAP</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Chromium ; Comparative analysis ; Geochemistry ; Iron ; Iron oxides ; Mineralogy ; Petrology ; Temperature effects ; Thermodynamics</subject><ispartof>Contributions to mineralogy and petrology, 2005-07, Vol.149 (5), p.591-599</ispartof><rights>Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3</citedby><cites>FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kurepin, Viktor A.</creatorcontrib><title>A thermodynamic model of Fe–Cr spinels</title><title>Contributions to mineralogy and petrology</title><description>A new thermodynamic model for multi-component spinel solid solutions has been developed which takes into account thermodynamic consequences of cation mixing in spinel sublattices. It has been applied to the evaluation of thermodynamic functions of cation mixing and thermodynamic properties of Fe3O4-FeCr2O4 spinels using intracrystalline cation distribution in magnetite, lattice parameters and activity-composition relations of magnetite-chromite solid solutions. According to the model, cation distribution in binary spinels, (Fe1-x2+ Fex3+)[Fex2+Fe2-2y-x3+Cr2y]O4, and their thermodynamic properties depend strongly on Fe2+-Cr3+ cation mixing. Mixing of Fe2+-Fe3+ and Fe3+-Cr3+ can be accepted as ideal. If Fe2+, Fe3+ and Cr are denoted as 1, 3 and 4 respectively, the equation of cation distribution is -RT ln(x2/((1-x)(2-2y-x)))= DeltaG13* + (1-2x)W13+y(W14-W13-W34) where DeltaG13* is the difference between the Gibbs energy of inverse and normal magnetite, Wij is a Margules parameter of cation mixing and DeltaG13*, J/mol =-23,000+13.4 T, W14=36 kJ/mol, W13=W34=0. The positive nonconfigurational Gibbs energy of mixing is the main reason for changing activity-composition relations with temperature. According to the model, the solvus in Fe3O4-FeCr2O4 spinel has a critical temperature close to 500 degrees C, which is consistent with mineralogical data.[PUBLICATION ABSTRACT]</description><subject>Chromium</subject><subject>Comparative analysis</subject><subject>Geochemistry</subject><subject>Iron</subject><subject>Iron oxides</subject><subject>Mineralogy</subject><subject>Petrology</subject><subject>Temperature effects</subject><subject>Thermodynamics</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAUhYMoWEcfwF1x5SZ6k6b5WQ7FUWHAja5D0qTYoX8mncXsfAff0CcxpS4u517u4Rz4ELol8EAAxGMEYAQwQImBc4XZGcoIKygGxcU5ygDSVyilLtFVjAdIt1Rlhu63-fzpQz-602D6ts7T5rt8bPKd__3-qUIep3bwXbxGF43por_51w362D29Vy94__b8Wm332FBVzlgKa0tOOXjbeMYLWdepmQrDhLPLeOesI9Ioy1wtiCJUKgHUKeqY86bYoLs1dwrj19HHWR_GYxhSpaYgiWQSVDKR1VSHMcbgGz2FtjfhpAnohYdeeejEQy88NCv-AJqPUmA</recordid><startdate>200507</startdate><enddate>200507</enddate><creator>Kurepin, Viktor A.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>200507</creationdate><title>A thermodynamic model of Fe–Cr spinels</title><author>Kurepin, Viktor A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chromium</topic><topic>Comparative analysis</topic><topic>Geochemistry</topic><topic>Iron</topic><topic>Iron oxides</topic><topic>Mineralogy</topic><topic>Petrology</topic><topic>Temperature effects</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurepin, Viktor A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurepin, Viktor A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermodynamic model of Fe–Cr spinels</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><date>2005-07</date><risdate>2005</risdate><volume>149</volume><issue>5</issue><spage>591</spage><epage>599</epage><pages>591-599</pages><issn>0010-7999</issn><eissn>1432-0967</eissn><coden>CMPEAP</coden><abstract>A new thermodynamic model for multi-component spinel solid solutions has been developed which takes into account thermodynamic consequences of cation mixing in spinel sublattices. It has been applied to the evaluation of thermodynamic functions of cation mixing and thermodynamic properties of Fe3O4-FeCr2O4 spinels using intracrystalline cation distribution in magnetite, lattice parameters and activity-composition relations of magnetite-chromite solid solutions. According to the model, cation distribution in binary spinels, (Fe1-x2+ Fex3+)[Fex2+Fe2-2y-x3+Cr2y]O4, and their thermodynamic properties depend strongly on Fe2+-Cr3+ cation mixing. Mixing of Fe2+-Fe3+ and Fe3+-Cr3+ can be accepted as ideal. If Fe2+, Fe3+ and Cr are denoted as 1, 3 and 4 respectively, the equation of cation distribution is -RT ln(x2/((1-x)(2-2y-x)))= DeltaG13* + (1-2x)W13+y(W14-W13-W34) where DeltaG13* is the difference between the Gibbs energy of inverse and normal magnetite, Wij is a Margules parameter of cation mixing and DeltaG13*, J/mol =-23,000+13.4 T, W14=36 kJ/mol, W13=W34=0. The positive nonconfigurational Gibbs energy of mixing is the main reason for changing activity-composition relations with temperature. According to the model, the solvus in Fe3O4-FeCr2O4 spinel has a critical temperature close to 500 degrees C, which is consistent with mineralogical data.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00410-005-0669-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2005-07, Vol.149 (5), p.591-599
issn 0010-7999
1432-0967
language eng
recordid cdi_proquest_journals_208184809
source Springer Link
subjects Chromium
Comparative analysis
Geochemistry
Iron
Iron oxides
Mineralogy
Petrology
Temperature effects
Thermodynamics
title A thermodynamic model of Fe–Cr spinels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermodynamic%20model%20of%20Fe%E2%80%93Cr%20spinels&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Kurepin,%20Viktor%20A.&rft.date=2005-07&rft.volume=149&rft.issue=5&rft.spage=591&rft.epage=599&rft.pages=591-599&rft.issn=0010-7999&rft.eissn=1432-0967&rft.coden=CMPEAP&rft_id=info:doi/10.1007/s00410-005-0669-4&rft_dat=%3Cproquest_cross%3E892209471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=208184809&rft_id=info:pmid/&rfr_iscdi=true