Loading…
A thermodynamic model of Fe–Cr spinels
A new thermodynamic model for multi-component spinel solid solutions has been developed which takes into account thermodynamic consequences of cation mixing in spinel sublattices. It has been applied to the evaluation of thermodynamic functions of cation mixing and thermodynamic properties of Fe3O4-...
Saved in:
Published in: | Contributions to mineralogy and petrology 2005-07, Vol.149 (5), p.591-599 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3 |
---|---|
cites | cdi_FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3 |
container_end_page | 599 |
container_issue | 5 |
container_start_page | 591 |
container_title | Contributions to mineralogy and petrology |
container_volume | 149 |
creator | Kurepin, Viktor A. |
description | A new thermodynamic model for multi-component spinel solid solutions has been developed which takes into account thermodynamic consequences of cation mixing in spinel sublattices. It has been applied to the evaluation of thermodynamic functions of cation mixing and thermodynamic properties of Fe3O4-FeCr2O4 spinels using intracrystalline cation distribution in magnetite, lattice parameters and activity-composition relations of magnetite-chromite solid solutions. According to the model, cation distribution in binary spinels, (Fe1-x2+ Fex3+)[Fex2+Fe2-2y-x3+Cr2y]O4, and their thermodynamic properties depend strongly on Fe2+-Cr3+ cation mixing. Mixing of Fe2+-Fe3+ and Fe3+-Cr3+ can be accepted as ideal. If Fe2+, Fe3+ and Cr are denoted as 1, 3 and 4 respectively, the equation of cation distribution is -RT ln(x2/((1-x)(2-2y-x)))= DeltaG13* + (1-2x)W13+y(W14-W13-W34) where DeltaG13* is the difference between the Gibbs energy of inverse and normal magnetite, Wij is a Margules parameter of cation mixing and DeltaG13*, J/mol =-23,000+13.4 T, W14=36 kJ/mol, W13=W34=0. The positive nonconfigurational Gibbs energy of mixing is the main reason for changing activity-composition relations with temperature. According to the model, the solvus in Fe3O4-FeCr2O4 spinel has a critical temperature close to 500 degrees C, which is consistent with mineralogical data.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00410-005-0669-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_208184809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>892209471</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3</originalsourceid><addsrcrecordid>eNotkM1KxDAUhYMoWEcfwF1x5SZ6k6b5WQ7FUWHAja5D0qTYoX8mncXsfAff0CcxpS4u517u4Rz4ELol8EAAxGMEYAQwQImBc4XZGcoIKygGxcU5ygDSVyilLtFVjAdIt1Rlhu63-fzpQz-602D6ts7T5rt8bPKd__3-qUIep3bwXbxGF43por_51w362D29Vy94__b8Wm332FBVzlgKa0tOOXjbeMYLWdepmQrDhLPLeOesI9Ioy1wtiCJUKgHUKeqY86bYoLs1dwrj19HHWR_GYxhSpaYgiWQSVDKR1VSHMcbgGz2FtjfhpAnohYdeeejEQy88NCv-AJqPUmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208184809</pqid></control><display><type>article</type><title>A thermodynamic model of Fe–Cr spinels</title><source>Springer Link</source><creator>Kurepin, Viktor A.</creator><creatorcontrib>Kurepin, Viktor A.</creatorcontrib><description>A new thermodynamic model for multi-component spinel solid solutions has been developed which takes into account thermodynamic consequences of cation mixing in spinel sublattices. It has been applied to the evaluation of thermodynamic functions of cation mixing and thermodynamic properties of Fe3O4-FeCr2O4 spinels using intracrystalline cation distribution in magnetite, lattice parameters and activity-composition relations of magnetite-chromite solid solutions. According to the model, cation distribution in binary spinels, (Fe1-x2+ Fex3+)[Fex2+Fe2-2y-x3+Cr2y]O4, and their thermodynamic properties depend strongly on Fe2+-Cr3+ cation mixing. Mixing of Fe2+-Fe3+ and Fe3+-Cr3+ can be accepted as ideal. If Fe2+, Fe3+ and Cr are denoted as 1, 3 and 4 respectively, the equation of cation distribution is -RT ln(x2/((1-x)(2-2y-x)))= DeltaG13* + (1-2x)W13+y(W14-W13-W34) where DeltaG13* is the difference between the Gibbs energy of inverse and normal magnetite, Wij is a Margules parameter of cation mixing and DeltaG13*, J/mol =-23,000+13.4 T, W14=36 kJ/mol, W13=W34=0. The positive nonconfigurational Gibbs energy of mixing is the main reason for changing activity-composition relations with temperature. According to the model, the solvus in Fe3O4-FeCr2O4 spinel has a critical temperature close to 500 degrees C, which is consistent with mineralogical data.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-005-0669-4</identifier><identifier>CODEN: CMPEAP</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Chromium ; Comparative analysis ; Geochemistry ; Iron ; Iron oxides ; Mineralogy ; Petrology ; Temperature effects ; Thermodynamics</subject><ispartof>Contributions to mineralogy and petrology, 2005-07, Vol.149 (5), p.591-599</ispartof><rights>Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3</citedby><cites>FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kurepin, Viktor A.</creatorcontrib><title>A thermodynamic model of Fe–Cr spinels</title><title>Contributions to mineralogy and petrology</title><description>A new thermodynamic model for multi-component spinel solid solutions has been developed which takes into account thermodynamic consequences of cation mixing in spinel sublattices. It has been applied to the evaluation of thermodynamic functions of cation mixing and thermodynamic properties of Fe3O4-FeCr2O4 spinels using intracrystalline cation distribution in magnetite, lattice parameters and activity-composition relations of magnetite-chromite solid solutions. According to the model, cation distribution in binary spinels, (Fe1-x2+ Fex3+)[Fex2+Fe2-2y-x3+Cr2y]O4, and their thermodynamic properties depend strongly on Fe2+-Cr3+ cation mixing. Mixing of Fe2+-Fe3+ and Fe3+-Cr3+ can be accepted as ideal. If Fe2+, Fe3+ and Cr are denoted as 1, 3 and 4 respectively, the equation of cation distribution is -RT ln(x2/((1-x)(2-2y-x)))= DeltaG13* + (1-2x)W13+y(W14-W13-W34) where DeltaG13* is the difference between the Gibbs energy of inverse and normal magnetite, Wij is a Margules parameter of cation mixing and DeltaG13*, J/mol =-23,000+13.4 T, W14=36 kJ/mol, W13=W34=0. The positive nonconfigurational Gibbs energy of mixing is the main reason for changing activity-composition relations with temperature. According to the model, the solvus in Fe3O4-FeCr2O4 spinel has a critical temperature close to 500 degrees C, which is consistent with mineralogical data.[PUBLICATION ABSTRACT]</description><subject>Chromium</subject><subject>Comparative analysis</subject><subject>Geochemistry</subject><subject>Iron</subject><subject>Iron oxides</subject><subject>Mineralogy</subject><subject>Petrology</subject><subject>Temperature effects</subject><subject>Thermodynamics</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAUhYMoWEcfwF1x5SZ6k6b5WQ7FUWHAja5D0qTYoX8mncXsfAff0CcxpS4u517u4Rz4ELol8EAAxGMEYAQwQImBc4XZGcoIKygGxcU5ygDSVyilLtFVjAdIt1Rlhu63-fzpQz-602D6ts7T5rt8bPKd__3-qUIep3bwXbxGF43por_51w362D29Vy94__b8Wm332FBVzlgKa0tOOXjbeMYLWdepmQrDhLPLeOesI9Ioy1wtiCJUKgHUKeqY86bYoLs1dwrj19HHWR_GYxhSpaYgiWQSVDKR1VSHMcbgGz2FtjfhpAnohYdeeejEQy88NCv-AJqPUmA</recordid><startdate>200507</startdate><enddate>200507</enddate><creator>Kurepin, Viktor A.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>200507</creationdate><title>A thermodynamic model of Fe–Cr spinels</title><author>Kurepin, Viktor A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chromium</topic><topic>Comparative analysis</topic><topic>Geochemistry</topic><topic>Iron</topic><topic>Iron oxides</topic><topic>Mineralogy</topic><topic>Petrology</topic><topic>Temperature effects</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurepin, Viktor A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurepin, Viktor A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermodynamic model of Fe–Cr spinels</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><date>2005-07</date><risdate>2005</risdate><volume>149</volume><issue>5</issue><spage>591</spage><epage>599</epage><pages>591-599</pages><issn>0010-7999</issn><eissn>1432-0967</eissn><coden>CMPEAP</coden><abstract>A new thermodynamic model for multi-component spinel solid solutions has been developed which takes into account thermodynamic consequences of cation mixing in spinel sublattices. It has been applied to the evaluation of thermodynamic functions of cation mixing and thermodynamic properties of Fe3O4-FeCr2O4 spinels using intracrystalline cation distribution in magnetite, lattice parameters and activity-composition relations of magnetite-chromite solid solutions. According to the model, cation distribution in binary spinels, (Fe1-x2+ Fex3+)[Fex2+Fe2-2y-x3+Cr2y]O4, and their thermodynamic properties depend strongly on Fe2+-Cr3+ cation mixing. Mixing of Fe2+-Fe3+ and Fe3+-Cr3+ can be accepted as ideal. If Fe2+, Fe3+ and Cr are denoted as 1, 3 and 4 respectively, the equation of cation distribution is -RT ln(x2/((1-x)(2-2y-x)))= DeltaG13* + (1-2x)W13+y(W14-W13-W34) where DeltaG13* is the difference between the Gibbs energy of inverse and normal magnetite, Wij is a Margules parameter of cation mixing and DeltaG13*, J/mol =-23,000+13.4 T, W14=36 kJ/mol, W13=W34=0. The positive nonconfigurational Gibbs energy of mixing is the main reason for changing activity-composition relations with temperature. According to the model, the solvus in Fe3O4-FeCr2O4 spinel has a critical temperature close to 500 degrees C, which is consistent with mineralogical data.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00410-005-0669-4</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-7999 |
ispartof | Contributions to mineralogy and petrology, 2005-07, Vol.149 (5), p.591-599 |
issn | 0010-7999 1432-0967 |
language | eng |
recordid | cdi_proquest_journals_208184809 |
source | Springer Link |
subjects | Chromium Comparative analysis Geochemistry Iron Iron oxides Mineralogy Petrology Temperature effects Thermodynamics |
title | A thermodynamic model of Fe–Cr spinels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermodynamic%20model%20of%20Fe%E2%80%93Cr%20spinels&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Kurepin,%20Viktor%20A.&rft.date=2005-07&rft.volume=149&rft.issue=5&rft.spage=591&rft.epage=599&rft.pages=591-599&rft.issn=0010-7999&rft.eissn=1432-0967&rft.coden=CMPEAP&rft_id=info:doi/10.1007/s00410-005-0669-4&rft_dat=%3Cproquest_cross%3E892209471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a295t-87bb56260ebfe4638cc01027a47db47dbeddbd18a9b4dc7191289702d92d4dea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=208184809&rft_id=info:pmid/&rfr_iscdi=true |