Loading…
Microstructural and optical properties of rare earth ions doped TiO2 for potential white LED applications
Nano ceramics of pure TiO 2 and Dy 3+ , Eu 3+ and Tb 3+ doped TiO 2 are prepared by hydrothermal method and these are characterized by using X-ray diffractometer (XRD), UV–Visible spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRT...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2018-10, Vol.29 (19), p.16824-16835 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-8a4406e8c9f847149f77188924162dafef93cc138550906341f7d0b808889f8c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-8a4406e8c9f847149f77188924162dafef93cc138550906341f7d0b808889f8c3 |
container_end_page | 16835 |
container_issue | 19 |
container_start_page | 16824 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 29 |
creator | Zikriya, Mohamed Nadaf, Y. F. Manjunath, C. Renuka, C. G. |
description | Nano ceramics of pure TiO
2
and Dy
3+
, Eu
3+
and Tb
3+
doped TiO
2
are prepared by hydrothermal method and these are characterized by using X-ray diffractometer (XRD), UV–Visible spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and photoluminescence spectroscopy. XRD analysis revealed that the average particle size of the pure TiO
2
and Dy
3+
, Eu
3+
and Tb
3+
doped TiO
2
are in the range of 45–35 nm and confirms the anatase phase. The FESEM and HRTEM analysis confirm that the obtained ceramics are in nano regime. The absorption spectrum revealed that the bandgap of the TiO
2
ceramics are in the range 3.14–3.2 eV. The PL analysis showed that the doping of Dy
3+
, Eu
3+
and Tb
3+
had improved the luminescence behavior than the pure TiO
2
nanoparticles. Overall, by doping 0.5 mol% concentration of rare earth (RE) greatly alters the structural morphology and directly influence the luminescence behavior of TiO
2
and suitable for advanced optoelectronic applications. The color purity of the studied samples is found to be 91% for Dy
3+
, 84% for Eu
3+
and 73% for Tb
3+
at the excitation of 345 nm, 376 nm and 350 nm respectively. The single-doped sample Eu
3+
: TiO
2
, Tb
3+
: TiO
2
and Dy
3+
: TiO
2
samples showed orange–red, blue–green and white emissions respectively. |
doi_str_mv | 10.1007/s10854-018-9777-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2081905689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081905689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8a4406e8c9f847149f77188924162dafef93cc138550906341f7d0b808889f8c3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAc3Sym2ySo9T6Byq9VPAW4m5iU-pmTbKI394sFTx5moH5vTczD6FLCtcUQNwkCpIzAlQSJYQgzRGaUS5qwmT1eoxmoLggjFfVKTpLaQcADavlDPln38aQchzbPEazx6bvcBiyb0s_xDDYmL1NODgcTbTYmpi32Ic-4a4MO7zx6wq7EPEQsu2zL7Kvrc8Wr5Z32AzDvjjliT9HJ87sk734rXP0cr_cLB7Jav3wtLhdkbbmKhNpGIPGylY5yQRlyglBpVQVo03VGWedqtuW1pJzUNDUjDrRwZsEWSAn23qOrg6-5frP0aasd2GMfVmpK5BUAW-kKhQ9UNP3KVqnh-g_TPzWFPSUqD4kqkuiekpUN0VTHTSpsP27jX_O_4t-ACxQeOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081905689</pqid></control><display><type>article</type><title>Microstructural and optical properties of rare earth ions doped TiO2 for potential white LED applications</title><source>Springer Nature</source><creator>Zikriya, Mohamed ; Nadaf, Y. F. ; Manjunath, C. ; Renuka, C. G.</creator><creatorcontrib>Zikriya, Mohamed ; Nadaf, Y. F. ; Manjunath, C. ; Renuka, C. G.</creatorcontrib><description>Nano ceramics of pure TiO
2
and Dy
3+
, Eu
3+
and Tb
3+
doped TiO
2
are prepared by hydrothermal method and these are characterized by using X-ray diffractometer (XRD), UV–Visible spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and photoluminescence spectroscopy. XRD analysis revealed that the average particle size of the pure TiO
2
and Dy
3+
, Eu
3+
and Tb
3+
doped TiO
2
are in the range of 45–35 nm and confirms the anatase phase. The FESEM and HRTEM analysis confirm that the obtained ceramics are in nano regime. The absorption spectrum revealed that the bandgap of the TiO
2
ceramics are in the range 3.14–3.2 eV. The PL analysis showed that the doping of Dy
3+
, Eu
3+
and Tb
3+
had improved the luminescence behavior than the pure TiO
2
nanoparticles. Overall, by doping 0.5 mol% concentration of rare earth (RE) greatly alters the structural morphology and directly influence the luminescence behavior of TiO
2
and suitable for advanced optoelectronic applications. The color purity of the studied samples is found to be 91% for Dy
3+
, 84% for Eu
3+
and 73% for Tb
3+
at the excitation of 345 nm, 376 nm and 350 nm respectively. The single-doped sample Eu
3+
: TiO
2
, Tb
3+
: TiO
2
and Dy
3+
: TiO
2
samples showed orange–red, blue–green and white emissions respectively.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-018-9777-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption spectra ; Anatase ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Doping ; Dysprosium ; Energy gap ; Europium ; Field emission microscopy ; Light emitting diodes ; Luminescence ; Materials Science ; Metal ions ; Microstructure ; Morphology ; Optical and Electronic Materials ; Optical properties ; Optoelectronics ; Photoluminescence ; Rare earth elements ; Scanning electron microscopy ; Spectrum analysis ; Titanium dioxide ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2018-10, Vol.29 (19), p.16824-16835</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8a4406e8c9f847149f77188924162dafef93cc138550906341f7d0b808889f8c3</citedby><cites>FETCH-LOGICAL-c359t-8a4406e8c9f847149f77188924162dafef93cc138550906341f7d0b808889f8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zikriya, Mohamed</creatorcontrib><creatorcontrib>Nadaf, Y. F.</creatorcontrib><creatorcontrib>Manjunath, C.</creatorcontrib><creatorcontrib>Renuka, C. G.</creatorcontrib><title>Microstructural and optical properties of rare earth ions doped TiO2 for potential white LED applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Nano ceramics of pure TiO
2
and Dy
3+
, Eu
3+
and Tb
3+
doped TiO
2
are prepared by hydrothermal method and these are characterized by using X-ray diffractometer (XRD), UV–Visible spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and photoluminescence spectroscopy. XRD analysis revealed that the average particle size of the pure TiO
2
and Dy
3+
, Eu
3+
and Tb
3+
doped TiO
2
are in the range of 45–35 nm and confirms the anatase phase. The FESEM and HRTEM analysis confirm that the obtained ceramics are in nano regime. The absorption spectrum revealed that the bandgap of the TiO
2
ceramics are in the range 3.14–3.2 eV. The PL analysis showed that the doping of Dy
3+
, Eu
3+
and Tb
3+
had improved the luminescence behavior than the pure TiO
2
nanoparticles. Overall, by doping 0.5 mol% concentration of rare earth (RE) greatly alters the structural morphology and directly influence the luminescence behavior of TiO
2
and suitable for advanced optoelectronic applications. The color purity of the studied samples is found to be 91% for Dy
3+
, 84% for Eu
3+
and 73% for Tb
3+
at the excitation of 345 nm, 376 nm and 350 nm respectively. The single-doped sample Eu
3+
: TiO
2
, Tb
3+
: TiO
2
and Dy
3+
: TiO
2
samples showed orange–red, blue–green and white emissions respectively.</description><subject>Absorption spectra</subject><subject>Anatase</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Doping</subject><subject>Dysprosium</subject><subject>Energy gap</subject><subject>Europium</subject><subject>Field emission microscopy</subject><subject>Light emitting diodes</subject><subject>Luminescence</subject><subject>Materials Science</subject><subject>Metal ions</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Photoluminescence</subject><subject>Rare earth elements</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAc3Sym2ySo9T6Byq9VPAW4m5iU-pmTbKI394sFTx5moH5vTczD6FLCtcUQNwkCpIzAlQSJYQgzRGaUS5qwmT1eoxmoLggjFfVKTpLaQcADavlDPln38aQchzbPEazx6bvcBiyb0s_xDDYmL1NODgcTbTYmpi32Ic-4a4MO7zx6wq7EPEQsu2zL7Kvrc8Wr5Z32AzDvjjliT9HJ87sk734rXP0cr_cLB7Jav3wtLhdkbbmKhNpGIPGylY5yQRlyglBpVQVo03VGWedqtuW1pJzUNDUjDrRwZsEWSAn23qOrg6-5frP0aasd2GMfVmpK5BUAW-kKhQ9UNP3KVqnh-g_TPzWFPSUqD4kqkuiekpUN0VTHTSpsP27jX_O_4t-ACxQeOo</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Zikriya, Mohamed</creator><creator>Nadaf, Y. F.</creator><creator>Manjunath, C.</creator><creator>Renuka, C. G.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20181001</creationdate><title>Microstructural and optical properties of rare earth ions doped TiO2 for potential white LED applications</title><author>Zikriya, Mohamed ; Nadaf, Y. F. ; Manjunath, C. ; Renuka, C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8a4406e8c9f847149f77188924162dafef93cc138550906341f7d0b808889f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectra</topic><topic>Anatase</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Doping</topic><topic>Dysprosium</topic><topic>Energy gap</topic><topic>Europium</topic><topic>Field emission microscopy</topic><topic>Light emitting diodes</topic><topic>Luminescence</topic><topic>Materials Science</topic><topic>Metal ions</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Photoluminescence</topic><topic>Rare earth elements</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zikriya, Mohamed</creatorcontrib><creatorcontrib>Nadaf, Y. F.</creatorcontrib><creatorcontrib>Manjunath, C.</creatorcontrib><creatorcontrib>Renuka, C. G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zikriya, Mohamed</au><au>Nadaf, Y. F.</au><au>Manjunath, C.</au><au>Renuka, C. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural and optical properties of rare earth ions doped TiO2 for potential white LED applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>29</volume><issue>19</issue><spage>16824</spage><epage>16835</epage><pages>16824-16835</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Nano ceramics of pure TiO
2
and Dy
3+
, Eu
3+
and Tb
3+
doped TiO
2
are prepared by hydrothermal method and these are characterized by using X-ray diffractometer (XRD), UV–Visible spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and photoluminescence spectroscopy. XRD analysis revealed that the average particle size of the pure TiO
2
and Dy
3+
, Eu
3+
and Tb
3+
doped TiO
2
are in the range of 45–35 nm and confirms the anatase phase. The FESEM and HRTEM analysis confirm that the obtained ceramics are in nano regime. The absorption spectrum revealed that the bandgap of the TiO
2
ceramics are in the range 3.14–3.2 eV. The PL analysis showed that the doping of Dy
3+
, Eu
3+
and Tb
3+
had improved the luminescence behavior than the pure TiO
2
nanoparticles. Overall, by doping 0.5 mol% concentration of rare earth (RE) greatly alters the structural morphology and directly influence the luminescence behavior of TiO
2
and suitable for advanced optoelectronic applications. The color purity of the studied samples is found to be 91% for Dy
3+
, 84% for Eu
3+
and 73% for Tb
3+
at the excitation of 345 nm, 376 nm and 350 nm respectively. The single-doped sample Eu
3+
: TiO
2
, Tb
3+
: TiO
2
and Dy
3+
: TiO
2
samples showed orange–red, blue–green and white emissions respectively.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-018-9777-6</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2018-10, Vol.29 (19), p.16824-16835 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2081905689 |
source | Springer Nature |
subjects | Absorption spectra Anatase Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Doping Dysprosium Energy gap Europium Field emission microscopy Light emitting diodes Luminescence Materials Science Metal ions Microstructure Morphology Optical and Electronic Materials Optical properties Optoelectronics Photoluminescence Rare earth elements Scanning electron microscopy Spectrum analysis Titanium dioxide Transmission electron microscopy X-ray diffraction |
title | Microstructural and optical properties of rare earth ions doped TiO2 for potential white LED applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20and%20optical%20properties%20of%20rare%20earth%20ions%20doped%20TiO2%20for%20potential%20white%20LED%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zikriya,%20Mohamed&rft.date=2018-10-01&rft.volume=29&rft.issue=19&rft.spage=16824&rft.epage=16835&rft.pages=16824-16835&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-018-9777-6&rft_dat=%3Cproquest_cross%3E2081905689%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-8a4406e8c9f847149f77188924162dafef93cc138550906341f7d0b808889f8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2081905689&rft_id=info:pmid/&rfr_iscdi=true |