Loading…
Collective Motion of Polarized Dipolar Fermi Gases in the Hydrodynamic Regime
Recently, a seminal STIRAP experiment allowed the creation of 40K-87Rb molecules in the rovibrational ground state [K.-K. Ni et al., Science 322, 231 (2008)]. In order to describe such a polarized dipolar Fermi gas in the hydrodynamic regime, we work out a variational time-dependent Hartree-Fock app...
Saved in:
Published in: | arXiv.org 2010-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, a seminal STIRAP experiment allowed the creation of 40K-87Rb molecules in the rovibrational ground state [K.-K. Ni et al., Science 322, 231 (2008)]. In order to describe such a polarized dipolar Fermi gas in the hydrodynamic regime, we work out a variational time-dependent Hartree-Fock approach. With this we calculate dynamical properties of such a system as, for instance, the frequencies of the low-lying excitations and the time-of-flight expansion. We find that the dipole-dipole interaction induces anisotropic breathing oscillations in momentum space. In addition, after release from the trap, the momentum distribution becomes asymptotically isotropic, while the particle density becomes anisotropic. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0908.4583 |