Loading…
Matrices over finite fields and their Kirchhoff graphs
Given a stoichiometric matrix A with integer entries, we seek to visualize the information by a reaction network N, whose edges are labeled by the columns of A, such that all column dependencies are realized as cycles in N. Moreover, the vector edges of N are assigned integer multiplicities so that...
Saved in:
Published in: | Linear algebra and its applications 2018-06, Vol.547, p.128-147 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453 |
container_end_page | 147 |
container_issue | |
container_start_page | 128 |
container_title | Linear algebra and its applications |
container_volume | 547 |
creator | Reese, Tyler M. Fehribach, Joseph D. Paffenroth, Randy C. Servatius, Brigitte |
description | Given a stoichiometric matrix A with integer entries, we seek to visualize the information by a reaction network N, whose edges are labeled by the columns of A, such that all column dependencies are realized as cycles in N. Moreover, the vector edges of N are assigned integer multiplicities so that every vertex of N corresponds to a vector in the row space of A. A finite such N is called a Kirchhoff graph. We establish the existence of nontrivial Kirchhoff graphs over finite fields, but the general problem over the integers is still open. |
doi_str_mv | 10.1016/j.laa.2018.02.020 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082038673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518300879</els_id><sourcerecordid>2082038673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKs_wNuC511fkk02iycpWsWKFz2HNHlxs9TdmmwL_ntT6lkYmMt88x5DyDWFigKVt321MaZiQFUFLAtOyIyqhpdUCXlKZgCsLnnTinNykVIPAHUDbEbkq5lisJiKcY-x8GEIE2bDjUuFGVwxdRhi8RKi7brR--Izmm2XLsmZN5uEV38-Jx-PD--Lp3L1tnxe3K9Ky6WaSi7ANVI4Lp1F5VpcW8ls28iatx7BGMBWOlF7I0EgOmzWtQErAdD5uhZ8Tm6Ovds4fu8wTbofd3HIJzUDxYAr2fCcoseUjWNKEb3exvBl4o-moA_z6F7nefRhHg0sCzJzd2Qwv78PGHWyAQeLLkS0k3Zj-If-Bc-ybIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082038673</pqid></control><display><type>article</type><title>Matrices over finite fields and their Kirchhoff graphs</title><source>Elsevier</source><creator>Reese, Tyler M. ; Fehribach, Joseph D. ; Paffenroth, Randy C. ; Servatius, Brigitte</creator><creatorcontrib>Reese, Tyler M. ; Fehribach, Joseph D. ; Paffenroth, Randy C. ; Servatius, Brigitte</creatorcontrib><description>Given a stoichiometric matrix A with integer entries, we seek to visualize the information by a reaction network N, whose edges are labeled by the columns of A, such that all column dependencies are realized as cycles in N. Moreover, the vector edges of N are assigned integer multiplicities so that every vertex of N corresponds to a vector in the row space of A. A finite such N is called a Kirchhoff graph. We establish the existence of nontrivial Kirchhoff graphs over finite fields, but the general problem over the integers is still open.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.02.020</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Cayley color graphs ; Finite fields ; Finite volume method ; Graph theory ; Graphs ; Integers ; Kirchhoff graphs ; Linear algebra ; Matroids ; Sparsity ; Surge protectors</subject><ispartof>Linear algebra and its applications, 2018-06, Vol.547, p.128-147</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jun 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453</citedby><cites>FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Reese, Tyler M.</creatorcontrib><creatorcontrib>Fehribach, Joseph D.</creatorcontrib><creatorcontrib>Paffenroth, Randy C.</creatorcontrib><creatorcontrib>Servatius, Brigitte</creatorcontrib><title>Matrices over finite fields and their Kirchhoff graphs</title><title>Linear algebra and its applications</title><description>Given a stoichiometric matrix A with integer entries, we seek to visualize the information by a reaction network N, whose edges are labeled by the columns of A, such that all column dependencies are realized as cycles in N. Moreover, the vector edges of N are assigned integer multiplicities so that every vertex of N corresponds to a vector in the row space of A. A finite such N is called a Kirchhoff graph. We establish the existence of nontrivial Kirchhoff graphs over finite fields, but the general problem over the integers is still open.</description><subject>Cayley color graphs</subject><subject>Finite fields</subject><subject>Finite volume method</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Integers</subject><subject>Kirchhoff graphs</subject><subject>Linear algebra</subject><subject>Matroids</subject><subject>Sparsity</subject><subject>Surge protectors</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKs_wNuC511fkk02iycpWsWKFz2HNHlxs9TdmmwL_ntT6lkYmMt88x5DyDWFigKVt321MaZiQFUFLAtOyIyqhpdUCXlKZgCsLnnTinNykVIPAHUDbEbkq5lisJiKcY-x8GEIE2bDjUuFGVwxdRhi8RKi7brR--Izmm2XLsmZN5uEV38-Jx-PD--Lp3L1tnxe3K9Ky6WaSi7ANVI4Lp1F5VpcW8ls28iatx7BGMBWOlF7I0EgOmzWtQErAdD5uhZ8Tm6Ovds4fu8wTbofd3HIJzUDxYAr2fCcoseUjWNKEb3exvBl4o-moA_z6F7nefRhHg0sCzJzd2Qwv78PGHWyAQeLLkS0k3Zj-If-Bc-ybIE</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Reese, Tyler M.</creator><creator>Fehribach, Joseph D.</creator><creator>Paffenroth, Randy C.</creator><creator>Servatius, Brigitte</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180615</creationdate><title>Matrices over finite fields and their Kirchhoff graphs</title><author>Reese, Tyler M. ; Fehribach, Joseph D. ; Paffenroth, Randy C. ; Servatius, Brigitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cayley color graphs</topic><topic>Finite fields</topic><topic>Finite volume method</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Integers</topic><topic>Kirchhoff graphs</topic><topic>Linear algebra</topic><topic>Matroids</topic><topic>Sparsity</topic><topic>Surge protectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reese, Tyler M.</creatorcontrib><creatorcontrib>Fehribach, Joseph D.</creatorcontrib><creatorcontrib>Paffenroth, Randy C.</creatorcontrib><creatorcontrib>Servatius, Brigitte</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reese, Tyler M.</au><au>Fehribach, Joseph D.</au><au>Paffenroth, Randy C.</au><au>Servatius, Brigitte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrices over finite fields and their Kirchhoff graphs</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>547</volume><spage>128</spage><epage>147</epage><pages>128-147</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Given a stoichiometric matrix A with integer entries, we seek to visualize the information by a reaction network N, whose edges are labeled by the columns of A, such that all column dependencies are realized as cycles in N. Moreover, the vector edges of N are assigned integer multiplicities so that every vertex of N corresponds to a vector in the row space of A. A finite such N is called a Kirchhoff graph. We establish the existence of nontrivial Kirchhoff graphs over finite fields, but the general problem over the integers is still open.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.02.020</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2018-06, Vol.547, p.128-147 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2082038673 |
source | Elsevier |
subjects | Cayley color graphs Finite fields Finite volume method Graph theory Graphs Integers Kirchhoff graphs Linear algebra Matroids Sparsity Surge protectors |
title | Matrices over finite fields and their Kirchhoff graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrices%20over%20finite%20fields%20and%20their%20Kirchhoff%20graphs&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Reese,%20Tyler%20M.&rft.date=2018-06-15&rft.volume=547&rft.spage=128&rft.epage=147&rft.pages=128-147&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.02.020&rft_dat=%3Cproquest_cross%3E2082038673%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082038673&rft_id=info:pmid/&rfr_iscdi=true |