Loading…

Matrices over finite fields and their Kirchhoff graphs

Given a stoichiometric matrix A with integer entries, we seek to visualize the information by a reaction network N, whose edges are labeled by the columns of A, such that all column dependencies are realized as cycles in N. Moreover, the vector edges of N are assigned integer multiplicities so that...

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications 2018-06, Vol.547, p.128-147
Main Authors: Reese, Tyler M., Fehribach, Joseph D., Paffenroth, Randy C., Servatius, Brigitte
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453
cites cdi_FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453
container_end_page 147
container_issue
container_start_page 128
container_title Linear algebra and its applications
container_volume 547
creator Reese, Tyler M.
Fehribach, Joseph D.
Paffenroth, Randy C.
Servatius, Brigitte
description Given a stoichiometric matrix A with integer entries, we seek to visualize the information by a reaction network N, whose edges are labeled by the columns of A, such that all column dependencies are realized as cycles in N. Moreover, the vector edges of N are assigned integer multiplicities so that every vertex of N corresponds to a vector in the row space of A. A finite such N is called a Kirchhoff graph. We establish the existence of nontrivial Kirchhoff graphs over finite fields, but the general problem over the integers is still open.
doi_str_mv 10.1016/j.laa.2018.02.020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082038673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518300879</els_id><sourcerecordid>2082038673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKs_wNuC511fkk02iycpWsWKFz2HNHlxs9TdmmwL_ntT6lkYmMt88x5DyDWFigKVt321MaZiQFUFLAtOyIyqhpdUCXlKZgCsLnnTinNykVIPAHUDbEbkq5lisJiKcY-x8GEIE2bDjUuFGVwxdRhi8RKi7brR--Izmm2XLsmZN5uEV38-Jx-PD--Lp3L1tnxe3K9Ky6WaSi7ANVI4Lp1F5VpcW8ls28iatx7BGMBWOlF7I0EgOmzWtQErAdD5uhZ8Tm6Ovds4fu8wTbofd3HIJzUDxYAr2fCcoseUjWNKEb3exvBl4o-moA_z6F7nefRhHg0sCzJzd2Qwv78PGHWyAQeLLkS0k3Zj-If-Bc-ybIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082038673</pqid></control><display><type>article</type><title>Matrices over finite fields and their Kirchhoff graphs</title><source>Elsevier</source><creator>Reese, Tyler M. ; Fehribach, Joseph D. ; Paffenroth, Randy C. ; Servatius, Brigitte</creator><creatorcontrib>Reese, Tyler M. ; Fehribach, Joseph D. ; Paffenroth, Randy C. ; Servatius, Brigitte</creatorcontrib><description>Given a stoichiometric matrix A with integer entries, we seek to visualize the information by a reaction network N, whose edges are labeled by the columns of A, such that all column dependencies are realized as cycles in N. Moreover, the vector edges of N are assigned integer multiplicities so that every vertex of N corresponds to a vector in the row space of A. A finite such N is called a Kirchhoff graph. We establish the existence of nontrivial Kirchhoff graphs over finite fields, but the general problem over the integers is still open.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.02.020</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Cayley color graphs ; Finite fields ; Finite volume method ; Graph theory ; Graphs ; Integers ; Kirchhoff graphs ; Linear algebra ; Matroids ; Sparsity ; Surge protectors</subject><ispartof>Linear algebra and its applications, 2018-06, Vol.547, p.128-147</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jun 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453</citedby><cites>FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Reese, Tyler M.</creatorcontrib><creatorcontrib>Fehribach, Joseph D.</creatorcontrib><creatorcontrib>Paffenroth, Randy C.</creatorcontrib><creatorcontrib>Servatius, Brigitte</creatorcontrib><title>Matrices over finite fields and their Kirchhoff graphs</title><title>Linear algebra and its applications</title><description>Given a stoichiometric matrix A with integer entries, we seek to visualize the information by a reaction network N, whose edges are labeled by the columns of A, such that all column dependencies are realized as cycles in N. Moreover, the vector edges of N are assigned integer multiplicities so that every vertex of N corresponds to a vector in the row space of A. A finite such N is called a Kirchhoff graph. We establish the existence of nontrivial Kirchhoff graphs over finite fields, but the general problem over the integers is still open.</description><subject>Cayley color graphs</subject><subject>Finite fields</subject><subject>Finite volume method</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Integers</subject><subject>Kirchhoff graphs</subject><subject>Linear algebra</subject><subject>Matroids</subject><subject>Sparsity</subject><subject>Surge protectors</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKs_wNuC511fkk02iycpWsWKFz2HNHlxs9TdmmwL_ntT6lkYmMt88x5DyDWFigKVt321MaZiQFUFLAtOyIyqhpdUCXlKZgCsLnnTinNykVIPAHUDbEbkq5lisJiKcY-x8GEIE2bDjUuFGVwxdRhi8RKi7brR--Izmm2XLsmZN5uEV38-Jx-PD--Lp3L1tnxe3K9Ky6WaSi7ANVI4Lp1F5VpcW8ls28iatx7BGMBWOlF7I0EgOmzWtQErAdD5uhZ8Tm6Ovds4fu8wTbofd3HIJzUDxYAr2fCcoseUjWNKEb3exvBl4o-moA_z6F7nefRhHg0sCzJzd2Qwv78PGHWyAQeLLkS0k3Zj-If-Bc-ybIE</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Reese, Tyler M.</creator><creator>Fehribach, Joseph D.</creator><creator>Paffenroth, Randy C.</creator><creator>Servatius, Brigitte</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180615</creationdate><title>Matrices over finite fields and their Kirchhoff graphs</title><author>Reese, Tyler M. ; Fehribach, Joseph D. ; Paffenroth, Randy C. ; Servatius, Brigitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cayley color graphs</topic><topic>Finite fields</topic><topic>Finite volume method</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Integers</topic><topic>Kirchhoff graphs</topic><topic>Linear algebra</topic><topic>Matroids</topic><topic>Sparsity</topic><topic>Surge protectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reese, Tyler M.</creatorcontrib><creatorcontrib>Fehribach, Joseph D.</creatorcontrib><creatorcontrib>Paffenroth, Randy C.</creatorcontrib><creatorcontrib>Servatius, Brigitte</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reese, Tyler M.</au><au>Fehribach, Joseph D.</au><au>Paffenroth, Randy C.</au><au>Servatius, Brigitte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrices over finite fields and their Kirchhoff graphs</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>547</volume><spage>128</spage><epage>147</epage><pages>128-147</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Given a stoichiometric matrix A with integer entries, we seek to visualize the information by a reaction network N, whose edges are labeled by the columns of A, such that all column dependencies are realized as cycles in N. Moreover, the vector edges of N are assigned integer multiplicities so that every vertex of N corresponds to a vector in the row space of A. A finite such N is called a Kirchhoff graph. We establish the existence of nontrivial Kirchhoff graphs over finite fields, but the general problem over the integers is still open.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.02.020</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2018-06, Vol.547, p.128-147
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2082038673
source Elsevier
subjects Cayley color graphs
Finite fields
Finite volume method
Graph theory
Graphs
Integers
Kirchhoff graphs
Linear algebra
Matroids
Sparsity
Surge protectors
title Matrices over finite fields and their Kirchhoff graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrices%20over%20finite%20fields%20and%20their%20Kirchhoff%20graphs&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Reese,%20Tyler%20M.&rft.date=2018-06-15&rft.volume=547&rft.spage=128&rft.epage=147&rft.pages=128-147&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.02.020&rft_dat=%3Cproquest_cross%3E2082038673%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-350d765d36dce8d9ebc62c976439fe0aa0e96d54fa605eede7b4a0c600edf4453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082038673&rft_id=info:pmid/&rfr_iscdi=true