Loading…
The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph
In this paper we introduce a parameter Mm(G), defined as the maximum over the minimal multiplicities of eigenvalues among all symmetric matrices corresponding to a graph G. We develop basic properties of Mm(G) and compute it for several families of graphs.
Saved in:
Published in: | Linear algebra and its applications 2017-01, Vol.512, p.48-70 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3 |
container_end_page | 70 |
container_issue | |
container_start_page | 48 |
container_title | Linear algebra and its applications |
container_volume | 512 |
creator | Oblak, Polona Šmigoc, Helena |
description | In this paper we introduce a parameter Mm(G), defined as the maximum over the minimal multiplicities of eigenvalues among all symmetric matrices corresponding to a graph G. We develop basic properties of Mm(G) and compute it for several families of graphs. |
doi_str_mv | 10.1016/j.laa.2016.09.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082039448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002437951630413X</els_id><sourcerecordid>2082039448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlOUDuFninGAnduKIE6rYpEpcytlyJtPWVTZsp9C_x1E5c5p5M-_N8gi54yzljBcP-7Q1Js1imrIqZVyckQVXZZ5wJYtzsmAsE0leVvKSXHm_Z4yJkmULEtY7pJ35sd3U0WFDwwxtbzvT0m5qgx1bCzYc5x7aLfYH007oZ-iPXYfBWYj6OcTq927wSEcTArqeWk9h6H1wxvbY0PpIDd06M-5uyMXGtB5v_-I1-Xx5Xi_fktXH6_vyaZVAXqiQSJU1jYQMmEGsqqIxDSCyeoMCZAaylFJUkiuhilLVCrgBUZUKRA4cpanza3J_mju64SteHfR-mFwfV-qMqYzllRAqsviJBW7w3uFGjy7-746aMz2bq_c6mqtnczWrdDQ3ah5PGoznHyw67cFiD9hYhxB0M9h_1L-biIRD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082039448</pqid></control><display><type>article</type><title>The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph</title><source>Elsevier</source><creator>Oblak, Polona ; Šmigoc, Helena</creator><creatorcontrib>Oblak, Polona ; Šmigoc, Helena</creatorcontrib><description>In this paper we introduce a parameter Mm(G), defined as the maximum over the minimal multiplicities of eigenvalues among all symmetric matrices corresponding to a graph G. We develop basic properties of Mm(G) and compute it for several families of graphs.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2016.09.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Eigenvalues ; Graph ; Graphs ; Inverse problems ; Linear algebra ; Mathematical analysis ; Matrix methods ; Minimal rank ; Multiplicity of an eigenvalue ; Symmetric matrix ; Symmetry</subject><ispartof>Linear algebra and its applications, 2017-01, Vol.512, p.48-70</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jan 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3</citedby><cites>FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Oblak, Polona</creatorcontrib><creatorcontrib>Šmigoc, Helena</creatorcontrib><title>The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph</title><title>Linear algebra and its applications</title><description>In this paper we introduce a parameter Mm(G), defined as the maximum over the minimal multiplicities of eigenvalues among all symmetric matrices corresponding to a graph G. We develop basic properties of Mm(G) and compute it for several families of graphs.</description><subject>Eigenvalues</subject><subject>Graph</subject><subject>Graphs</subject><subject>Inverse problems</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Minimal rank</subject><subject>Multiplicity of an eigenvalue</subject><subject>Symmetric matrix</subject><subject>Symmetry</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlOUDuFninGAnduKIE6rYpEpcytlyJtPWVTZsp9C_x1E5c5p5M-_N8gi54yzljBcP-7Q1Js1imrIqZVyckQVXZZ5wJYtzsmAsE0leVvKSXHm_Z4yJkmULEtY7pJ35sd3U0WFDwwxtbzvT0m5qgx1bCzYc5x7aLfYH007oZ-iPXYfBWYj6OcTq927wSEcTArqeWk9h6H1wxvbY0PpIDd06M-5uyMXGtB5v_-I1-Xx5Xi_fktXH6_vyaZVAXqiQSJU1jYQMmEGsqqIxDSCyeoMCZAaylFJUkiuhilLVCrgBUZUKRA4cpanza3J_mju64SteHfR-mFwfV-qMqYzllRAqsviJBW7w3uFGjy7-746aMz2bq_c6mqtnczWrdDQ3ah5PGoznHyw67cFiD9hYhxB0M9h_1L-biIRD</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Oblak, Polona</creator><creator>Šmigoc, Helena</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph</title><author>Oblak, Polona ; Šmigoc, Helena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Eigenvalues</topic><topic>Graph</topic><topic>Graphs</topic><topic>Inverse problems</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Minimal rank</topic><topic>Multiplicity of an eigenvalue</topic><topic>Symmetric matrix</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oblak, Polona</creatorcontrib><creatorcontrib>Šmigoc, Helena</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oblak, Polona</au><au>Šmigoc, Helena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>512</volume><spage>48</spage><epage>70</epage><pages>48-70</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this paper we introduce a parameter Mm(G), defined as the maximum over the minimal multiplicities of eigenvalues among all symmetric matrices corresponding to a graph G. We develop basic properties of Mm(G) and compute it for several families of graphs.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2016.09.014</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2017-01, Vol.512, p.48-70 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2082039448 |
source | Elsevier |
subjects | Eigenvalues Graph Graphs Inverse problems Linear algebra Mathematical analysis Matrix methods Minimal rank Multiplicity of an eigenvalue Symmetric matrix Symmetry |
title | The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20maximum%20of%20the%20minimal%20multiplicity%20of%20eigenvalues%20of%20symmetric%20matrices%20whose%20pattern%20is%20constrained%20by%20a%20graph&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Oblak,%20Polona&rft.date=2017-01-01&rft.volume=512&rft.spage=48&rft.epage=70&rft.pages=48-70&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2016.09.014&rft_dat=%3Cproquest_cross%3E2082039448%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082039448&rft_id=info:pmid/&rfr_iscdi=true |