Loading…

The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph

In this paper we introduce a parameter Mm(G), defined as the maximum over the minimal multiplicities of eigenvalues among all symmetric matrices corresponding to a graph G. We develop basic properties of Mm(G) and compute it for several families of graphs.

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications 2017-01, Vol.512, p.48-70
Main Authors: Oblak, Polona, Šmigoc, Helena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3
cites cdi_FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3
container_end_page 70
container_issue
container_start_page 48
container_title Linear algebra and its applications
container_volume 512
creator Oblak, Polona
Šmigoc, Helena
description In this paper we introduce a parameter Mm(G), defined as the maximum over the minimal multiplicities of eigenvalues among all symmetric matrices corresponding to a graph G. We develop basic properties of Mm(G) and compute it for several families of graphs.
doi_str_mv 10.1016/j.laa.2016.09.014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082039448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002437951630413X</els_id><sourcerecordid>2082039448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlOUDuFninGAnduKIE6rYpEpcytlyJtPWVTZsp9C_x1E5c5p5M-_N8gi54yzljBcP-7Q1Js1imrIqZVyckQVXZZ5wJYtzsmAsE0leVvKSXHm_Z4yJkmULEtY7pJ35sd3U0WFDwwxtbzvT0m5qgx1bCzYc5x7aLfYH007oZ-iPXYfBWYj6OcTq927wSEcTArqeWk9h6H1wxvbY0PpIDd06M-5uyMXGtB5v_-I1-Xx5Xi_fktXH6_vyaZVAXqiQSJU1jYQMmEGsqqIxDSCyeoMCZAaylFJUkiuhilLVCrgBUZUKRA4cpanza3J_mju64SteHfR-mFwfV-qMqYzllRAqsviJBW7w3uFGjy7-746aMz2bq_c6mqtnczWrdDQ3ah5PGoznHyw67cFiD9hYhxB0M9h_1L-biIRD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082039448</pqid></control><display><type>article</type><title>The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph</title><source>Elsevier</source><creator>Oblak, Polona ; Šmigoc, Helena</creator><creatorcontrib>Oblak, Polona ; Šmigoc, Helena</creatorcontrib><description>In this paper we introduce a parameter Mm(G), defined as the maximum over the minimal multiplicities of eigenvalues among all symmetric matrices corresponding to a graph G. We develop basic properties of Mm(G) and compute it for several families of graphs.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2016.09.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Eigenvalues ; Graph ; Graphs ; Inverse problems ; Linear algebra ; Mathematical analysis ; Matrix methods ; Minimal rank ; Multiplicity of an eigenvalue ; Symmetric matrix ; Symmetry</subject><ispartof>Linear algebra and its applications, 2017-01, Vol.512, p.48-70</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jan 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3</citedby><cites>FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Oblak, Polona</creatorcontrib><creatorcontrib>Šmigoc, Helena</creatorcontrib><title>The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph</title><title>Linear algebra and its applications</title><description>In this paper we introduce a parameter Mm(G), defined as the maximum over the minimal multiplicities of eigenvalues among all symmetric matrices corresponding to a graph G. We develop basic properties of Mm(G) and compute it for several families of graphs.</description><subject>Eigenvalues</subject><subject>Graph</subject><subject>Graphs</subject><subject>Inverse problems</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Minimal rank</subject><subject>Multiplicity of an eigenvalue</subject><subject>Symmetric matrix</subject><subject>Symmetry</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlOUDuFninGAnduKIE6rYpEpcytlyJtPWVTZsp9C_x1E5c5p5M-_N8gi54yzljBcP-7Q1Js1imrIqZVyckQVXZZ5wJYtzsmAsE0leVvKSXHm_Z4yJkmULEtY7pJ35sd3U0WFDwwxtbzvT0m5qgx1bCzYc5x7aLfYH007oZ-iPXYfBWYj6OcTq927wSEcTArqeWk9h6H1wxvbY0PpIDd06M-5uyMXGtB5v_-I1-Xx5Xi_fktXH6_vyaZVAXqiQSJU1jYQMmEGsqqIxDSCyeoMCZAaylFJUkiuhilLVCrgBUZUKRA4cpanza3J_mju64SteHfR-mFwfV-qMqYzllRAqsviJBW7w3uFGjy7-746aMz2bq_c6mqtnczWrdDQ3ah5PGoznHyw67cFiD9hYhxB0M9h_1L-biIRD</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Oblak, Polona</creator><creator>Šmigoc, Helena</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph</title><author>Oblak, Polona ; Šmigoc, Helena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Eigenvalues</topic><topic>Graph</topic><topic>Graphs</topic><topic>Inverse problems</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Minimal rank</topic><topic>Multiplicity of an eigenvalue</topic><topic>Symmetric matrix</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oblak, Polona</creatorcontrib><creatorcontrib>Šmigoc, Helena</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oblak, Polona</au><au>Šmigoc, Helena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>512</volume><spage>48</spage><epage>70</epage><pages>48-70</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this paper we introduce a parameter Mm(G), defined as the maximum over the minimal multiplicities of eigenvalues among all symmetric matrices corresponding to a graph G. We develop basic properties of Mm(G) and compute it for several families of graphs.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2016.09.014</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2017-01, Vol.512, p.48-70
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2082039448
source Elsevier
subjects Eigenvalues
Graph
Graphs
Inverse problems
Linear algebra
Mathematical analysis
Matrix methods
Minimal rank
Multiplicity of an eigenvalue
Symmetric matrix
Symmetry
title The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20maximum%20of%20the%20minimal%20multiplicity%20of%20eigenvalues%20of%20symmetric%20matrices%20whose%20pattern%20is%20constrained%20by%20a%20graph&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Oblak,%20Polona&rft.date=2017-01-01&rft.volume=512&rft.spage=48&rft.epage=70&rft.pages=48-70&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2016.09.014&rft_dat=%3Cproquest_cross%3E2082039448%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-582dd5c2c0aee996dadcee0bfe4c52c57554951848678b8c1ac4978c43c1e5ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082039448&rft_id=info:pmid/&rfr_iscdi=true