Loading…
Long time dynamics for damped Klein-Gordon equations
For general nonlinear Klein-Gordon equations with dissipation we show that any finite energy radial solution either blows up in finite time or asymptotically approaches a stationary solution in \(H^1\times L^2\). In particular, any global solution is bounded. The result applies to standard energy su...
Saved in:
Published in: | arXiv.org 2015-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Burq, N Raugel, G Schlag, W |
description | For general nonlinear Klein-Gordon equations with dissipation we show that any finite energy radial solution either blows up in finite time or asymptotically approaches a stationary solution in \(H^1\times L^2\). In particular, any global solution is bounded. The result applies to standard energy subcritical focusing nonlinearities \(|u|^{p-1} u\), \(1\textless{}p\textless{}(d+2)/(d-2)\) as well as any energy subcritical nonlinearity obeying a sign condition of the Ambrosetti-Rabinowitz type. The argument involves both techniques from nonlinear dispersive PDEs and dynamical systems (invariant manifold theory in Banach spaces and convergence theorems). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082090432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082090432</sourcerecordid><originalsourceid>FETCH-proquest_journals_20820904323</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScA_Em1TqLP6CjewlNKinNvW3SDL69Dj6A0xm-s2AFKLUTtQZYsTKlXkoJ-wNUlSqYfhC--OyD4_aNJvg28Y4ityaMzvL74DyKK0VLyN2UzewJ04YtOzMkV_66ZtvL-Xm6iTHSlF2am55yxC81IGuQR6kVqP-uDzzDNGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082090432</pqid></control><display><type>article</type><title>Long time dynamics for damped Klein-Gordon equations</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Burq, N ; Raugel, G ; Schlag, W</creator><creatorcontrib>Burq, N ; Raugel, G ; Schlag, W</creatorcontrib><description>For general nonlinear Klein-Gordon equations with dissipation we show that any finite energy radial solution either blows up in finite time or asymptotically approaches a stationary solution in \(H^1\times L^2\). In particular, any global solution is bounded. The result applies to standard energy subcritical focusing nonlinearities \(|u|^{p-1} u\), \(1\textless{}p\textless{}(d+2)/(d-2)\) as well as any energy subcritical nonlinearity obeying a sign condition of the Ambrosetti-Rabinowitz type. The argument involves both techniques from nonlinear dispersive PDEs and dynamical systems (invariant manifold theory in Banach spaces and convergence theorems).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Banach spaces ; Energy dissipation ; Mathematical analysis ; Nonlinear equations ; Nonlinearity</subject><ispartof>arXiv.org, 2015-05</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2082090432?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Burq, N</creatorcontrib><creatorcontrib>Raugel, G</creatorcontrib><creatorcontrib>Schlag, W</creatorcontrib><title>Long time dynamics for damped Klein-Gordon equations</title><title>arXiv.org</title><description>For general nonlinear Klein-Gordon equations with dissipation we show that any finite energy radial solution either blows up in finite time or asymptotically approaches a stationary solution in \(H^1\times L^2\). In particular, any global solution is bounded. The result applies to standard energy subcritical focusing nonlinearities \(|u|^{p-1} u\), \(1\textless{}p\textless{}(d+2)/(d-2)\) as well as any energy subcritical nonlinearity obeying a sign condition of the Ambrosetti-Rabinowitz type. The argument involves both techniques from nonlinear dispersive PDEs and dynamical systems (invariant manifold theory in Banach spaces and convergence theorems).</description><subject>Banach spaces</subject><subject>Energy dissipation</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScA_Em1TqLP6CjewlNKinNvW3SDL69Dj6A0xm-s2AFKLUTtQZYsTKlXkoJ-wNUlSqYfhC--OyD4_aNJvg28Y4ityaMzvL74DyKK0VLyN2UzewJ04YtOzMkV_66ZtvL-Xm6iTHSlF2am55yxC81IGuQR6kVqP-uDzzDNGA</recordid><startdate>20150522</startdate><enddate>20150522</enddate><creator>Burq, N</creator><creator>Raugel, G</creator><creator>Schlag, W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20150522</creationdate><title>Long time dynamics for damped Klein-Gordon equations</title><author>Burq, N ; Raugel, G ; Schlag, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20820904323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Banach spaces</topic><topic>Energy dissipation</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><toplevel>online_resources</toplevel><creatorcontrib>Burq, N</creatorcontrib><creatorcontrib>Raugel, G</creatorcontrib><creatorcontrib>Schlag, W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burq, N</au><au>Raugel, G</au><au>Schlag, W</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Long time dynamics for damped Klein-Gordon equations</atitle><jtitle>arXiv.org</jtitle><date>2015-05-22</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>For general nonlinear Klein-Gordon equations with dissipation we show that any finite energy radial solution either blows up in finite time or asymptotically approaches a stationary solution in \(H^1\times L^2\). In particular, any global solution is bounded. The result applies to standard energy subcritical focusing nonlinearities \(|u|^{p-1} u\), \(1\textless{}p\textless{}(d+2)/(d-2)\) as well as any energy subcritical nonlinearity obeying a sign condition of the Ambrosetti-Rabinowitz type. The argument involves both techniques from nonlinear dispersive PDEs and dynamical systems (invariant manifold theory in Banach spaces and convergence theorems).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2082090432 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Banach spaces Energy dissipation Mathematical analysis Nonlinear equations Nonlinearity |
title | Long time dynamics for damped Klein-Gordon equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Long%20time%20dynamics%20for%20damped%20Klein-Gordon%20equations&rft.jtitle=arXiv.org&rft.au=Burq,%20N&rft.date=2015-05-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2082090432%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20820904323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082090432&rft_id=info:pmid/&rfr_iscdi=true |