Loading…
The Bolocam Galactic Plane Survey V: HCO+ and N2H+ Spectroscopy of 1.1 mm Dust Continuum Sources
We present the results of observations of 1882 sources in the Bolocam Galactic Plane Survey (BGPS) at 1.1 mm with the 10m Heinrich Hertz Telescope simultaneously in HCO+ J=3-2 and N2H+ J=3-2. We detect 77% of these sources in HCO^+ and 51% in N2H+ at greater than 3\(\sigma\). We find a strong correl...
Saved in:
Published in: | arXiv.org 2011-05 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the results of observations of 1882 sources in the Bolocam Galactic Plane Survey (BGPS) at 1.1 mm with the 10m Heinrich Hertz Telescope simultaneously in HCO+ J=3-2 and N2H+ J=3-2. We detect 77% of these sources in HCO^+ and 51% in N2H+ at greater than 3\(\sigma\). We find a strong correlation between the integrated intensity of both dense gas tracers and the 1.1 mm dust emission of BGPS sources. We determine kinematic distances for 529 sources (440 in the first quadrant breaking the distance ambiguity and 89 in the second quadrant) We derive the size, mass, and average density for this subset of clumps. The median size of BGPS clumps is 0.75 pc with a median mass of 330 M\(_{\odot}\) (assuming T_{Dust}=20 K). The median HCO+ linewidth is 2.9 km s\(^{-1}\) indicating that BGPS clumps are dominated by supersonic turbulence or unresolved kinematic motions. We find no evidence for a size-linewidth relationship for BGPS clumps. We analyze the effects of the assumed dust temperature on the derived clump properties with a Monte Carlo simulation and we find that changing the temperature distribution will change the median source properties (mass, volume-averaged number density, surface density) by factors of a few. The observed differential mass distribution has a power-law slope that is intermediate between that observed for diffuse CO clouds and the stellar IMF. BGPS clumps represent a wide range of objects (from dense cores to more diffuse clumps) and are typically characterized by larger sizes and lower densities than previously published surveys of high-mass star-forming regions. This collection of objects is a less-biased sample of star-forming regions in the Milky Way that likely span a wide range of evolutionary states. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1105.4181 |