Loading…

Parallel-tempering cluster algorithm for computer simulations of critical phenomena

In finite-size scaling analyses of Monte Carlo simulations of second-order phase transitions one often needs an extended temperature range around the critical point. By combining the parallel tempering algorithm with cluster updates and an adaptive routine to find the temperature window of interest,...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2011-07
Main Authors: Bittner, Elmar, Janke, Wolfhard
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bittner, Elmar
Janke, Wolfhard
description In finite-size scaling analyses of Monte Carlo simulations of second-order phase transitions one often needs an extended temperature range around the critical point. By combining the parallel tempering algorithm with cluster updates and an adaptive routine to find the temperature window of interest, we introduce a flexible and powerful method for systematic investigations of critical phenomena. As a result, we gain one to two orders of magnitude in the performance for 2D and 3D Ising models in comparison with the recently proposed Wang-Landau recursion for cluster algorithms based on the multibondic algorithm, which is already a great improvement over the standard multicanonical variant.
doi_str_mv 10.48550/arxiv.1107.5640
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082257560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082257560</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510-da1141c9d441c0f96c48bafc48de0875ae0bfeaa8c9350cc56ce5068859f362f3</originalsourceid><addsrcrecordid>eNotjd9LwzAUhYMgOObefQz43HmT9Kbpowx_wUDBvY-7NNk60qYmrfjnW3Ev34HDxzmM3QlYlwYRHij9tN9rIaBaoy7hii2kUqIwpZQ3bJXzGQCkriSiWrDPD0oUggvF6LrBpbY_chumPLrEKRxjasdTx31M3MZumP7q3HZToLGNfebRczsrraXAh5PrY-d6umXXnkJ2q0su2e75abd5LbbvL2-bx21BKKBoSIhS2LopZ4KvtS3NgfzMxoGpkBwcvCMytlYI1qK2DkEbg7VXWnq1ZPf_s0OKX5PL4_4cp9TPj3sJRkqsUIP6BQQ4Uzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082257560</pqid></control><display><type>article</type><title>Parallel-tempering cluster algorithm for computer simulations of critical phenomena</title><source>ProQuest - Publicly Available Content Database</source><creator>Bittner, Elmar ; Janke, Wolfhard</creator><creatorcontrib>Bittner, Elmar ; Janke, Wolfhard</creatorcontrib><description>In finite-size scaling analyses of Monte Carlo simulations of second-order phase transitions one often needs an extended temperature range around the critical point. By combining the parallel tempering algorithm with cluster updates and an adaptive routine to find the temperature window of interest, we introduce a flexible and powerful method for systematic investigations of critical phenomena. As a result, we gain one to two orders of magnitude in the performance for 2D and 3D Ising models in comparison with the recently proposed Wang-Landau recursion for cluster algorithms based on the multibondic algorithm, which is already a great improvement over the standard multicanonical variant.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1107.5640</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptive algorithms ; Algorithms ; Clusters ; Computer simulation ; Critical phenomena ; Critical point ; Ising model ; Monte Carlo simulation ; Phase transitions ; Tempering ; Three dimensional models ; Two dimensional models</subject><ispartof>arXiv.org, 2011-07</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2082257560?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Bittner, Elmar</creatorcontrib><creatorcontrib>Janke, Wolfhard</creatorcontrib><title>Parallel-tempering cluster algorithm for computer simulations of critical phenomena</title><title>arXiv.org</title><description>In finite-size scaling analyses of Monte Carlo simulations of second-order phase transitions one often needs an extended temperature range around the critical point. By combining the parallel tempering algorithm with cluster updates and an adaptive routine to find the temperature window of interest, we introduce a flexible and powerful method for systematic investigations of critical phenomena. As a result, we gain one to two orders of magnitude in the performance for 2D and 3D Ising models in comparison with the recently proposed Wang-Landau recursion for cluster algorithms based on the multibondic algorithm, which is already a great improvement over the standard multicanonical variant.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Clusters</subject><subject>Computer simulation</subject><subject>Critical phenomena</subject><subject>Critical point</subject><subject>Ising model</subject><subject>Monte Carlo simulation</subject><subject>Phase transitions</subject><subject>Tempering</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjd9LwzAUhYMgOObefQz43HmT9Kbpowx_wUDBvY-7NNk60qYmrfjnW3Ev34HDxzmM3QlYlwYRHij9tN9rIaBaoy7hii2kUqIwpZQ3bJXzGQCkriSiWrDPD0oUggvF6LrBpbY_chumPLrEKRxjasdTx31M3MZumP7q3HZToLGNfebRczsrraXAh5PrY-d6umXXnkJ2q0su2e75abd5LbbvL2-bx21BKKBoSIhS2LopZ4KvtS3NgfzMxoGpkBwcvCMytlYI1qK2DkEbg7VXWnq1ZPf_s0OKX5PL4_4cp9TPj3sJRkqsUIP6BQQ4Uzc</recordid><startdate>20110728</startdate><enddate>20110728</enddate><creator>Bittner, Elmar</creator><creator>Janke, Wolfhard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110728</creationdate><title>Parallel-tempering cluster algorithm for computer simulations of critical phenomena</title><author>Bittner, Elmar ; Janke, Wolfhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510-da1141c9d441c0f96c48bafc48de0875ae0bfeaa8c9350cc56ce5068859f362f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Clusters</topic><topic>Computer simulation</topic><topic>Critical phenomena</topic><topic>Critical point</topic><topic>Ising model</topic><topic>Monte Carlo simulation</topic><topic>Phase transitions</topic><topic>Tempering</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Bittner, Elmar</creatorcontrib><creatorcontrib>Janke, Wolfhard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bittner, Elmar</au><au>Janke, Wolfhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel-tempering cluster algorithm for computer simulations of critical phenomena</atitle><jtitle>arXiv.org</jtitle><date>2011-07-28</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>In finite-size scaling analyses of Monte Carlo simulations of second-order phase transitions one often needs an extended temperature range around the critical point. By combining the parallel tempering algorithm with cluster updates and an adaptive routine to find the temperature window of interest, we introduce a flexible and powerful method for systematic investigations of critical phenomena. As a result, we gain one to two orders of magnitude in the performance for 2D and 3D Ising models in comparison with the recently proposed Wang-Landau recursion for cluster algorithms based on the multibondic algorithm, which is already a great improvement over the standard multicanonical variant.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1107.5640</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2011-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2082257560
source ProQuest - Publicly Available Content Database
subjects Adaptive algorithms
Algorithms
Clusters
Computer simulation
Critical phenomena
Critical point
Ising model
Monte Carlo simulation
Phase transitions
Tempering
Three dimensional models
Two dimensional models
title Parallel-tempering cluster algorithm for computer simulations of critical phenomena
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel-tempering%20cluster%20algorithm%20for%20computer%20simulations%20of%20critical%20phenomena&rft.jtitle=arXiv.org&rft.au=Bittner,%20Elmar&rft.date=2011-07-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1107.5640&rft_dat=%3Cproquest%3E2082257560%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a510-da1141c9d441c0f96c48bafc48de0875ae0bfeaa8c9350cc56ce5068859f362f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082257560&rft_id=info:pmid/&rfr_iscdi=true