Loading…
Strong contraction of the representations of the three dimensional Lie algebras
For any Inonu-Wigner contraction of a three dimensional Lie algebra we construct the corresponding contractions of representations. Our method is quite canonical in the sense that in all cases we deal with realizations of the representations on some spaces of functions; we contract the differential...
Saved in:
Published in: | arXiv.org 2012-04 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Subag, E M Baruch, E M Birman, J L Mann, A |
description | For any Inonu-Wigner contraction of a three dimensional Lie algebra we construct the corresponding contractions of representations. Our method is quite canonical in the sense that in all cases we deal with realizations of the representations on some spaces of functions; we contract the differential operators on those spaces along with the representation spaces themselves by taking certain pointwise limit of functions. We call such contractions strong contractions. We show that this pointwise limit gives rise to a direct limit space. Many of these contractions are new and in other examples we give a different proof. |
doi_str_mv | 10.48550/arxiv.1112.5738 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082347261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082347261</sourcerecordid><originalsourceid>FETCH-LOGICAL-a511-1fec35d1ee41ec40fe8eab6dfb09334e299566a7852e2af06d73a50ccb56510f3</originalsourceid><addsrcrecordid>eNo1zk1LAzEUheEgCJbavcuA66n5upnMUopfMNCF3Zc7mZt2yjipSSr-fCva1YFncXgZu5NiaRyAeMD0PXwtpZRqCbV2V2ymtJaVM0rdsEXOByGEsrUC0DO2fi8pTjvu41QS-jLEicfAy554omOiTFPBX80XLvtExPvhg6Z8dhx5OxDHcUddwnzLrgOOmRb_O2eb56fN6rVq1y9vq8e2QpCykoG8hl4SGUneiECOsLN96ESjtSHVNGAt1g4UKQzC9rVGEN53YEGKoOfs_u_2mOLniXLZHuIpnWPyVgmntKmVlfoHEyBQ7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082347261</pqid></control><display><type>article</type><title>Strong contraction of the representations of the three dimensional Lie algebras</title><source>ProQuest Publicly Available Content database</source><creator>Subag, E M ; Baruch, E M ; Birman, J L ; Mann, A</creator><creatorcontrib>Subag, E M ; Baruch, E M ; Birman, J L ; Mann, A</creatorcontrib><description>For any Inonu-Wigner contraction of a three dimensional Lie algebra we construct the corresponding contractions of representations. Our method is quite canonical in the sense that in all cases we deal with realizations of the representations on some spaces of functions; we contract the differential operators on those spaces along with the representation spaces themselves by taking certain pointwise limit of functions. We call such contractions strong contractions. We show that this pointwise limit gives rise to a direct limit space. Many of these contractions are new and in other examples we give a different proof.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1112.5738</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Lie groups ; Operators (mathematics) ; Representations</subject><ispartof>arXiv.org, 2012-04</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2082347261?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Subag, E M</creatorcontrib><creatorcontrib>Baruch, E M</creatorcontrib><creatorcontrib>Birman, J L</creatorcontrib><creatorcontrib>Mann, A</creatorcontrib><title>Strong contraction of the representations of the three dimensional Lie algebras</title><title>arXiv.org</title><description>For any Inonu-Wigner contraction of a three dimensional Lie algebra we construct the corresponding contractions of representations. Our method is quite canonical in the sense that in all cases we deal with realizations of the representations on some spaces of functions; we contract the differential operators on those spaces along with the representation spaces themselves by taking certain pointwise limit of functions. We call such contractions strong contractions. We show that this pointwise limit gives rise to a direct limit space. Many of these contractions are new and in other examples we give a different proof.</description><subject>Differential equations</subject><subject>Lie groups</subject><subject>Operators (mathematics)</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo1zk1LAzEUheEgCJbavcuA66n5upnMUopfMNCF3Zc7mZt2yjipSSr-fCva1YFncXgZu5NiaRyAeMD0PXwtpZRqCbV2V2ymtJaVM0rdsEXOByGEsrUC0DO2fi8pTjvu41QS-jLEicfAy554omOiTFPBX80XLvtExPvhg6Z8dhx5OxDHcUddwnzLrgOOmRb_O2eb56fN6rVq1y9vq8e2QpCykoG8hl4SGUneiECOsLN96ESjtSHVNGAt1g4UKQzC9rVGEN53YEGKoOfs_u_2mOLniXLZHuIpnWPyVgmntKmVlfoHEyBQ7A</recordid><startdate>20120412</startdate><enddate>20120412</enddate><creator>Subag, E M</creator><creator>Baruch, E M</creator><creator>Birman, J L</creator><creator>Mann, A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120412</creationdate><title>Strong contraction of the representations of the three dimensional Lie algebras</title><author>Subag, E M ; Baruch, E M ; Birman, J L ; Mann, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a511-1fec35d1ee41ec40fe8eab6dfb09334e299566a7852e2af06d73a50ccb56510f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Differential equations</topic><topic>Lie groups</topic><topic>Operators (mathematics)</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Subag, E M</creatorcontrib><creatorcontrib>Baruch, E M</creatorcontrib><creatorcontrib>Birman, J L</creatorcontrib><creatorcontrib>Mann, A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subag, E M</au><au>Baruch, E M</au><au>Birman, J L</au><au>Mann, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong contraction of the representations of the three dimensional Lie algebras</atitle><jtitle>arXiv.org</jtitle><date>2012-04-12</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>For any Inonu-Wigner contraction of a three dimensional Lie algebra we construct the corresponding contractions of representations. Our method is quite canonical in the sense that in all cases we deal with realizations of the representations on some spaces of functions; we contract the differential operators on those spaces along with the representation spaces themselves by taking certain pointwise limit of functions. We call such contractions strong contractions. We show that this pointwise limit gives rise to a direct limit space. Many of these contractions are new and in other examples we give a different proof.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1112.5738</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2012-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2082347261 |
source | ProQuest Publicly Available Content database |
subjects | Differential equations Lie groups Operators (mathematics) Representations |
title | Strong contraction of the representations of the three dimensional Lie algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20contraction%20of%20the%20representations%20of%20the%20three%20dimensional%20Lie%20algebras&rft.jtitle=arXiv.org&rft.au=Subag,%20E%20M&rft.date=2012-04-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1112.5738&rft_dat=%3Cproquest%3E2082347261%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a511-1fec35d1ee41ec40fe8eab6dfb09334e299566a7852e2af06d73a50ccb56510f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082347261&rft_id=info:pmid/&rfr_iscdi=true |