Loading…
Dynamics of a suspended nanowire driven by an ac Josephson current in an inhomogeneous magnetic field
We consider a voltage-biased nanoelectromechanical Josephson junction, where a suspended nanowire forms a superconducting weak-link, in an inhomogeneous magnetic field. We show that a nonlinear coupling between the Josephson current and the magnetic field generates a Laplace force that induces a whi...
Saved in:
Published in: | arXiv.org 2012-04 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a voltage-biased nanoelectromechanical Josephson junction, where a suspended nanowire forms a superconducting weak-link, in an inhomogeneous magnetic field. We show that a nonlinear coupling between the Josephson current and the magnetic field generates a Laplace force that induces a whirling motion of the nanowire. By performing an analytical and a numerical analysis, we demonstrate that at resonance, the amplitude-phase dynamics of the whirling movement present different regimes depending on the degree of inhomogeneity of the magnetic field: time independent, periodic and chaotic. Transitions between these regimes are also discussed. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1204.5020 |