Loading…
Quantum-dot-spin single-photon interface
Using background-free detection of spin-state-dependent resonance fluorescence from a single-electron charged quantum dot with an efficiency of 0:1%, we realize a single spin-photon interface where the detection of a scattered photon with 300 picosecond time resolution projects the quantum dot spin...
Saved in:
Published in: | arXiv.org 2010-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using background-free detection of spin-state-dependent resonance fluorescence from a single-electron charged quantum dot with an efficiency of 0:1%, we realize a single spin-photon interface where the detection of a scattered photon with 300 picosecond time resolution projects the quantum dot spin to a definite spin eigenstate with fidelity exceeding 99%. The bunching of resonantly scattered photons reveals information about electron spin dynamics. High-fidelity fast spin-state initialization heralded by a single photon enables the realization of quantum information processing tasks such as non-deterministic distant spin entanglement. Given that we could suppress the measurement back-action to well below the natural spin-flip rate, realization of a quantum non-demolition measurement of a single spin could be achieved by increasing the fluorescence collection efficiency by a factor exceeding 20 using a photonic nanostructure. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1003.5195 |