Loading…

(\mu\)-Limit Sets of Cellular Automata from a Computational Complexity Perspective

This paper concerns \(\mu\)-limit sets of cellular automata: sets of configurations made of words whose probability to appear does not vanish with time, starting from an initial \(\mu\)-random configuration. More precisely, we investigate the computational complexity of these sets and of related dec...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-06
Main Authors: Boyer, Laurent, Delacourt, Martin, Poupet, Victor, Sablik, Mathieu, Theyssier, Guillaume
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Boyer, Laurent
Delacourt, Martin
Poupet, Victor
Sablik, Mathieu
Theyssier, Guillaume
description This paper concerns \(\mu\)-limit sets of cellular automata: sets of configurations made of words whose probability to appear does not vanish with time, starting from an initial \(\mu\)-random configuration. More precisely, we investigate the computational complexity of these sets and of related decision problems. Main results: first, \(\mu\)-limit sets can have a \(\Sigma\_3^0\)-hard language, second, they can contain only \(\alpha\)-complex configurations, third, any non-trivial property concerning them is at least \(\Pi\_3^0\)-hard. We prove complexity upper bounds, study restrictions of these questions to particular classes of CA, and different types of (non-)convergence of the measure of a word during the evolution.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082700712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082700712</sourcerecordid><originalsourceid>FETCH-proquest_journals_20827007123</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_8MBFh0KaWNtViuLgIOpYKEFeISUxNXkR_XtF_ACn4-BuxBIhZZ5VKyEmLA2h55yLdSmKQibstGhsbJbZQVtNcEYK4Dqo0ZholIdNJGcVKei8s6CgdnaIpEi7mzJfM_jU9IIj-jDglfQDZ2zcKRMw_XHK5rvtpd5ng3f3iIHa3kX_-UMreCVKzstcyP-qN5tYP1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082700712</pqid></control><display><type>article</type><title>(\mu\)-Limit Sets of Cellular Automata from a Computational Complexity Perspective</title><source>Publicly Available Content (ProQuest)</source><creator>Boyer, Laurent ; Delacourt, Martin ; Poupet, Victor ; Sablik, Mathieu ; Theyssier, Guillaume</creator><creatorcontrib>Boyer, Laurent ; Delacourt, Martin ; Poupet, Victor ; Sablik, Mathieu ; Theyssier, Guillaume</creatorcontrib><description>This paper concerns \(\mu\)-limit sets of cellular automata: sets of configurations made of words whose probability to appear does not vanish with time, starting from an initial \(\mu\)-random configuration. More precisely, we investigate the computational complexity of these sets and of related decision problems. Main results: first, \(\mu\)-limit sets can have a \(\Sigma\_3^0\)-hard language, second, they can contain only \(\alpha\)-complex configurations, third, any non-trivial property concerning them is at least \(\Pi\_3^0\)-hard. We prove complexity upper bounds, study restrictions of these questions to particular classes of CA, and different types of (non-)convergence of the measure of a word during the evolution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automata theory ; Cellular automata ; Complexity ; Computation ; Configurations ; Upper bounds</subject><ispartof>arXiv.org, 2015-06</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2082700712?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Boyer, Laurent</creatorcontrib><creatorcontrib>Delacourt, Martin</creatorcontrib><creatorcontrib>Poupet, Victor</creatorcontrib><creatorcontrib>Sablik, Mathieu</creatorcontrib><creatorcontrib>Theyssier, Guillaume</creatorcontrib><title>(\mu\)-Limit Sets of Cellular Automata from a Computational Complexity Perspective</title><title>arXiv.org</title><description>This paper concerns \(\mu\)-limit sets of cellular automata: sets of configurations made of words whose probability to appear does not vanish with time, starting from an initial \(\mu\)-random configuration. More precisely, we investigate the computational complexity of these sets and of related decision problems. Main results: first, \(\mu\)-limit sets can have a \(\Sigma\_3^0\)-hard language, second, they can contain only \(\alpha\)-complex configurations, third, any non-trivial property concerning them is at least \(\Pi\_3^0\)-hard. We prove complexity upper bounds, study restrictions of these questions to particular classes of CA, and different types of (non-)convergence of the measure of a word during the evolution.</description><subject>Automata theory</subject><subject>Cellular automata</subject><subject>Complexity</subject><subject>Computation</subject><subject>Configurations</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_8MBFh0KaWNtViuLgIOpYKEFeISUxNXkR_XtF_ACn4-BuxBIhZZ5VKyEmLA2h55yLdSmKQibstGhsbJbZQVtNcEYK4Dqo0ZholIdNJGcVKei8s6CgdnaIpEi7mzJfM_jU9IIj-jDglfQDZ2zcKRMw_XHK5rvtpd5ng3f3iIHa3kX_-UMreCVKzstcyP-qN5tYP1k</recordid><startdate>20150622</startdate><enddate>20150622</enddate><creator>Boyer, Laurent</creator><creator>Delacourt, Martin</creator><creator>Poupet, Victor</creator><creator>Sablik, Mathieu</creator><creator>Theyssier, Guillaume</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150622</creationdate><title>(\mu\)-Limit Sets of Cellular Automata from a Computational Complexity Perspective</title><author>Boyer, Laurent ; Delacourt, Martin ; Poupet, Victor ; Sablik, Mathieu ; Theyssier, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20827007123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automata theory</topic><topic>Cellular automata</topic><topic>Complexity</topic><topic>Computation</topic><topic>Configurations</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Boyer, Laurent</creatorcontrib><creatorcontrib>Delacourt, Martin</creatorcontrib><creatorcontrib>Poupet, Victor</creatorcontrib><creatorcontrib>Sablik, Mathieu</creatorcontrib><creatorcontrib>Theyssier, Guillaume</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyer, Laurent</au><au>Delacourt, Martin</au><au>Poupet, Victor</au><au>Sablik, Mathieu</au><au>Theyssier, Guillaume</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(\mu\)-Limit Sets of Cellular Automata from a Computational Complexity Perspective</atitle><jtitle>arXiv.org</jtitle><date>2015-06-22</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>This paper concerns \(\mu\)-limit sets of cellular automata: sets of configurations made of words whose probability to appear does not vanish with time, starting from an initial \(\mu\)-random configuration. More precisely, we investigate the computational complexity of these sets and of related decision problems. Main results: first, \(\mu\)-limit sets can have a \(\Sigma\_3^0\)-hard language, second, they can contain only \(\alpha\)-complex configurations, third, any non-trivial property concerning them is at least \(\Pi\_3^0\)-hard. We prove complexity upper bounds, study restrictions of these questions to particular classes of CA, and different types of (non-)convergence of the measure of a word during the evolution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2082700712
source Publicly Available Content (ProQuest)
subjects Automata theory
Cellular automata
Complexity
Computation
Configurations
Upper bounds
title (\mu\)-Limit Sets of Cellular Automata from a Computational Complexity Perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(%5Cmu%5C)-Limit%20Sets%20of%20Cellular%20Automata%20from%20a%20Computational%20Complexity%20Perspective&rft.jtitle=arXiv.org&rft.au=Boyer,%20Laurent&rft.date=2015-06-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2082700712%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20827007123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082700712&rft_id=info:pmid/&rfr_iscdi=true