Loading…

Forecasting a Coronal Mass Ejection's Altered Trajectory: ForeCAT

To predict whether a coronal mass ejection (CME) will impact Earth, the effects of the background on the CME's trajectory must be taken into account. We develop a model, ForeCAT (Forecasting a CME's Altered Trajectory), of CME deflection due to magnetic forces. ForeCAT includes CME expansi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2013-07
Main Authors: Kay, Christina, Opher, Merav, Evans, Rebekah M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To predict whether a coronal mass ejection (CME) will impact Earth, the effects of the background on the CME's trajectory must be taken into account. We develop a model, ForeCAT (Forecasting a CME's Altered Trajectory), of CME deflection due to magnetic forces. ForeCAT includes CME expansion, a three-part propagation model, and the effects of drag on the CME's deflection. Given the background solar wind conditions, the launch site of the CME, and the properties of the CME (mass, final propagation speed, initial radius, and initial magnetic strength), ForeCAT predicts the deflection of the CME. Two different magnetic backgrounds are considered: a scaled background based on type II radio burst profiles and a Potential Field Source Surface (PFSS) background. For a scaled background where the CME is launched from an active region located between a CH and streamer region the strong magnetic gradients cause a deflection of 8.1 degrees in latitude and 26.4 degrees in longitude for a 1e15 g CME propagating out to 1 AU. Using the PFSS background, which captures the variation of the streamer belt position with height, leads to a deflection of 1.6 degrees in latitude and 4.1 degrees in longitude for the control case. Varying the CME's input parameters within observed ranges leads to the majority of CMEs reaching the streamer belt within the first few solar radii. For these specific backgrounds, the streamer belt acts like a potential well that forces the CME into an equilibrium angular position.
ISSN:2331-8422
DOI:10.48550/arxiv.1307.7603