Loading…
Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - IV. A 0.61 + 0.45 M_sun binary in a multiple system
We present the orbital and physical parameters of a newly discovered low-mass detached eclipsing binary from the All-Sky Automated Survey (ASAS) database: ASAS J011328-3821.1 A - a member of a visual binary system with the secondary component separated by about 1.4 seconds of arc. The radial velocit...
Saved in:
Published in: | arXiv.org 2012-06 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the orbital and physical parameters of a newly discovered low-mass detached eclipsing binary from the All-Sky Automated Survey (ASAS) database: ASAS J011328-3821.1 A - a member of a visual binary system with the secondary component separated by about 1.4 seconds of arc. The radial velocities were calculated from the high-resolution spectra obtained with the 1.9-m Radcliffe/GIRAFFE, 3.9-m AAT/UCLES and 3.0-m Shane/HamSpec telescopes/spectrographs on the basis of the TODCOR technique and positions of H_alpha emission lines. For the analysis we used V and I band photometry obtained with the 1.0-m Elizabeth and robotic 0.41-m PROMPT telescopes, supplemented with the publicly available ASAS light curve of the system. We found that ASAS J011328-3821.1 A is composed of two late-type dwarfs having masses of M_1 = 0.612 +/- 0.030 M_sun, M_2 = 0.445 +/- 0.019 M_sun and radii of R_1 = 0.596 +/- 0.020 R_sun, R_2 = 0.445 +/- 0.024 R_sun, both show a substantial level of activity, which manifests in strong H_alpha and H_beta emission and the presence of cool spots. The influence of the third light on the eclipsing pair properties was also evaluated and the photometric properties of the component B were derived. Comparison with several popular stellar evolution models shows that the system is on its main sequence evolution stage and probably is more metal rich than the Sun. We also found several clues which suggest that the component B itself is a binary composed of two nearly identical ~0.5 M_sun stars. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1206.2862 |