Loading…
Nuclear Structure Functions at Low-\(x\) in a Holographic Approach
Nuclear effects in deep inelastic scattering at low\(-x\) are phenomenologically described changing the typical dynamical and/or kinematical scales characterizing the free nucleon case. In a holographic approach, this rescaling is an analytical property of the computed structure function \(F_2(x,Q^2...
Saved in:
Published in: | arXiv.org 2014-01 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Agozzino, L Castorina, P Colangelo, P |
description | Nuclear effects in deep inelastic scattering at low\(-x\) are phenomenologically described changing the typical dynamical and/or kinematical scales characterizing the free nucleon case. In a holographic approach, this rescaling is an analytical property of the computed structure function \(F_2(x,Q^2)\). This function is given by the sum of a conformal term and of a contribution due to quark confinement, depending on IR hard-wall parameter \(z_0\) and on the mean square distances, related to a parameter \(Q^\prime\), among quarks and gluons in the target. The holographic structure function per nucleon in a nucleus \(A\) is evaluated showing that a rescaling of the typical nucleon size, \(z_0\) and \(Q^\prime\), due to nuclear binding, can be reabsorbed in a \(Q^2\)-rescaling scheme. The difference between neutron and proton structure functions and the effects of the longitudinal structure functions can also be taken into account. The obtained theoretical results favourably compare with the experimental data. |
doi_str_mv | 10.48550/arxiv.1401.0826 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082792643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082792643</sourcerecordid><originalsourceid>FETCH-proquest_journals_20827926433</originalsourceid><addsrcrecordid>eNqNjr0OgjAYABsTE4myO36Jiw5gaSngqEbDYFx0JCFNgwIhLfZHeXwZfACnG-6GQ2gZ4TDOGMNbrofmHUYxjkKckWSCPEJpFGQxITPkG9NijEmSEsaohw5XJ7qKa7hZ7YR1uoKzk8I2ShrgFi7qExTrodhAI4FDrjr11LyvGwH7vteKi3qBpg_emcr_cY5W59P9mAejfrnK2LJVTstRlWQcSnckiSn9r_oCEHY-9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082792643</pqid></control><display><type>article</type><title>Nuclear Structure Functions at Low-\(x\) in a Holographic Approach</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Agozzino, L ; Castorina, P ; Colangelo, P</creator><creatorcontrib>Agozzino, L ; Castorina, P ; Colangelo, P</creatorcontrib><description>Nuclear effects in deep inelastic scattering at low\(-x\) are phenomenologically described changing the typical dynamical and/or kinematical scales characterizing the free nucleon case. In a holographic approach, this rescaling is an analytical property of the computed structure function \(F_2(x,Q^2)\). This function is given by the sum of a conformal term and of a contribution due to quark confinement, depending on IR hard-wall parameter \(z_0\) and on the mean square distances, related to a parameter \(Q^\prime\), among quarks and gluons in the target. The holographic structure function per nucleon in a nucleus \(A\) is evaluated showing that a rescaling of the typical nucleon size, \(z_0\) and \(Q^\prime\), due to nuclear binding, can be reabsorbed in a \(Q^2\)-rescaling scheme. The difference between neutron and proton structure functions and the effects of the longitudinal structure functions can also be taken into account. The obtained theoretical results favourably compare with the experimental data.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1401.0826</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Gluons ; Inelastic scattering ; Mathematical analysis ; Nuclear structure ; Nuclei (nuclear physics) ; Parameters ; Quarks ; Rescaling</subject><ispartof>arXiv.org, 2014-01</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2082792643?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Agozzino, L</creatorcontrib><creatorcontrib>Castorina, P</creatorcontrib><creatorcontrib>Colangelo, P</creatorcontrib><title>Nuclear Structure Functions at Low-\(x\) in a Holographic Approach</title><title>arXiv.org</title><description>Nuclear effects in deep inelastic scattering at low\(-x\) are phenomenologically described changing the typical dynamical and/or kinematical scales characterizing the free nucleon case. In a holographic approach, this rescaling is an analytical property of the computed structure function \(F_2(x,Q^2)\). This function is given by the sum of a conformal term and of a contribution due to quark confinement, depending on IR hard-wall parameter \(z_0\) and on the mean square distances, related to a parameter \(Q^\prime\), among quarks and gluons in the target. The holographic structure function per nucleon in a nucleus \(A\) is evaluated showing that a rescaling of the typical nucleon size, \(z_0\) and \(Q^\prime\), due to nuclear binding, can be reabsorbed in a \(Q^2\)-rescaling scheme. The difference between neutron and proton structure functions and the effects of the longitudinal structure functions can also be taken into account. The obtained theoretical results favourably compare with the experimental data.</description><subject>Gluons</subject><subject>Inelastic scattering</subject><subject>Mathematical analysis</subject><subject>Nuclear structure</subject><subject>Nuclei (nuclear physics)</subject><subject>Parameters</subject><subject>Quarks</subject><subject>Rescaling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjr0OgjAYABsTE4myO36Jiw5gaSngqEbDYFx0JCFNgwIhLfZHeXwZfACnG-6GQ2gZ4TDOGMNbrofmHUYxjkKckWSCPEJpFGQxITPkG9NijEmSEsaohw5XJ7qKa7hZ7YR1uoKzk8I2ShrgFi7qExTrodhAI4FDrjr11LyvGwH7vteKi3qBpg_emcr_cY5W59P9mAejfrnK2LJVTstRlWQcSnckiSn9r_oCEHY-9A</recordid><startdate>20140104</startdate><enddate>20140104</enddate><creator>Agozzino, L</creator><creator>Castorina, P</creator><creator>Colangelo, P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140104</creationdate><title>Nuclear Structure Functions at Low-\(x\) in a Holographic Approach</title><author>Agozzino, L ; Castorina, P ; Colangelo, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20827926433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Gluons</topic><topic>Inelastic scattering</topic><topic>Mathematical analysis</topic><topic>Nuclear structure</topic><topic>Nuclei (nuclear physics)</topic><topic>Parameters</topic><topic>Quarks</topic><topic>Rescaling</topic><toplevel>online_resources</toplevel><creatorcontrib>Agozzino, L</creatorcontrib><creatorcontrib>Castorina, P</creatorcontrib><creatorcontrib>Colangelo, P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agozzino, L</au><au>Castorina, P</au><au>Colangelo, P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nuclear Structure Functions at Low-\(x\) in a Holographic Approach</atitle><jtitle>arXiv.org</jtitle><date>2014-01-04</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>Nuclear effects in deep inelastic scattering at low\(-x\) are phenomenologically described changing the typical dynamical and/or kinematical scales characterizing the free nucleon case. In a holographic approach, this rescaling is an analytical property of the computed structure function \(F_2(x,Q^2)\). This function is given by the sum of a conformal term and of a contribution due to quark confinement, depending on IR hard-wall parameter \(z_0\) and on the mean square distances, related to a parameter \(Q^\prime\), among quarks and gluons in the target. The holographic structure function per nucleon in a nucleus \(A\) is evaluated showing that a rescaling of the typical nucleon size, \(z_0\) and \(Q^\prime\), due to nuclear binding, can be reabsorbed in a \(Q^2\)-rescaling scheme. The difference between neutron and proton structure functions and the effects of the longitudinal structure functions can also be taken into account. The obtained theoretical results favourably compare with the experimental data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1401.0826</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2082792643 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Gluons Inelastic scattering Mathematical analysis Nuclear structure Nuclei (nuclear physics) Parameters Quarks Rescaling |
title | Nuclear Structure Functions at Low-\(x\) in a Holographic Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nuclear%20Structure%20Functions%20at%20Low-%5C(x%5C)%20in%20a%20Holographic%20Approach&rft.jtitle=arXiv.org&rft.au=Agozzino,%20L&rft.date=2014-01-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1401.0826&rft_dat=%3Cproquest%3E2082792643%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20827926433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082792643&rft_id=info:pmid/&rfr_iscdi=true |