Loading…

Nuclear Structure Functions at Low-\(x\) in a Holographic Approach

Nuclear effects in deep inelastic scattering at low\(-x\) are phenomenologically described changing the typical dynamical and/or kinematical scales characterizing the free nucleon case. In a holographic approach, this rescaling is an analytical property of the computed structure function \(F_2(x,Q^2...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-01
Main Authors: Agozzino, L, Castorina, P, Colangelo, P
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Agozzino, L
Castorina, P
Colangelo, P
description Nuclear effects in deep inelastic scattering at low\(-x\) are phenomenologically described changing the typical dynamical and/or kinematical scales characterizing the free nucleon case. In a holographic approach, this rescaling is an analytical property of the computed structure function \(F_2(x,Q^2)\). This function is given by the sum of a conformal term and of a contribution due to quark confinement, depending on IR hard-wall parameter \(z_0\) and on the mean square distances, related to a parameter \(Q^\prime\), among quarks and gluons in the target. The holographic structure function per nucleon in a nucleus \(A\) is evaluated showing that a rescaling of the typical nucleon size, \(z_0\) and \(Q^\prime\), due to nuclear binding, can be reabsorbed in a \(Q^2\)-rescaling scheme. The difference between neutron and proton structure functions and the effects of the longitudinal structure functions can also be taken into account. The obtained theoretical results favourably compare with the experimental data.
doi_str_mv 10.48550/arxiv.1401.0826
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082792643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082792643</sourcerecordid><originalsourceid>FETCH-proquest_journals_20827926433</originalsourceid><addsrcrecordid>eNqNjr0OgjAYABsTE4myO36Jiw5gaSngqEbDYFx0JCFNgwIhLfZHeXwZfACnG-6GQ2gZ4TDOGMNbrofmHUYxjkKckWSCPEJpFGQxITPkG9NijEmSEsaohw5XJ7qKa7hZ7YR1uoKzk8I2ShrgFi7qExTrodhAI4FDrjr11LyvGwH7vteKi3qBpg_emcr_cY5W59P9mAejfrnK2LJVTstRlWQcSnckiSn9r_oCEHY-9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082792643</pqid></control><display><type>article</type><title>Nuclear Structure Functions at Low-\(x\) in a Holographic Approach</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Agozzino, L ; Castorina, P ; Colangelo, P</creator><creatorcontrib>Agozzino, L ; Castorina, P ; Colangelo, P</creatorcontrib><description>Nuclear effects in deep inelastic scattering at low\(-x\) are phenomenologically described changing the typical dynamical and/or kinematical scales characterizing the free nucleon case. In a holographic approach, this rescaling is an analytical property of the computed structure function \(F_2(x,Q^2)\). This function is given by the sum of a conformal term and of a contribution due to quark confinement, depending on IR hard-wall parameter \(z_0\) and on the mean square distances, related to a parameter \(Q^\prime\), among quarks and gluons in the target. The holographic structure function per nucleon in a nucleus \(A\) is evaluated showing that a rescaling of the typical nucleon size, \(z_0\) and \(Q^\prime\), due to nuclear binding, can be reabsorbed in a \(Q^2\)-rescaling scheme. The difference between neutron and proton structure functions and the effects of the longitudinal structure functions can also be taken into account. The obtained theoretical results favourably compare with the experimental data.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1401.0826</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Gluons ; Inelastic scattering ; Mathematical analysis ; Nuclear structure ; Nuclei (nuclear physics) ; Parameters ; Quarks ; Rescaling</subject><ispartof>arXiv.org, 2014-01</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2082792643?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Agozzino, L</creatorcontrib><creatorcontrib>Castorina, P</creatorcontrib><creatorcontrib>Colangelo, P</creatorcontrib><title>Nuclear Structure Functions at Low-\(x\) in a Holographic Approach</title><title>arXiv.org</title><description>Nuclear effects in deep inelastic scattering at low\(-x\) are phenomenologically described changing the typical dynamical and/or kinematical scales characterizing the free nucleon case. In a holographic approach, this rescaling is an analytical property of the computed structure function \(F_2(x,Q^2)\). This function is given by the sum of a conformal term and of a contribution due to quark confinement, depending on IR hard-wall parameter \(z_0\) and on the mean square distances, related to a parameter \(Q^\prime\), among quarks and gluons in the target. The holographic structure function per nucleon in a nucleus \(A\) is evaluated showing that a rescaling of the typical nucleon size, \(z_0\) and \(Q^\prime\), due to nuclear binding, can be reabsorbed in a \(Q^2\)-rescaling scheme. The difference between neutron and proton structure functions and the effects of the longitudinal structure functions can also be taken into account. The obtained theoretical results favourably compare with the experimental data.</description><subject>Gluons</subject><subject>Inelastic scattering</subject><subject>Mathematical analysis</subject><subject>Nuclear structure</subject><subject>Nuclei (nuclear physics)</subject><subject>Parameters</subject><subject>Quarks</subject><subject>Rescaling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjr0OgjAYABsTE4myO36Jiw5gaSngqEbDYFx0JCFNgwIhLfZHeXwZfACnG-6GQ2gZ4TDOGMNbrofmHUYxjkKckWSCPEJpFGQxITPkG9NijEmSEsaohw5XJ7qKa7hZ7YR1uoKzk8I2ShrgFi7qExTrodhAI4FDrjr11LyvGwH7vteKi3qBpg_emcr_cY5W59P9mAejfrnK2LJVTstRlWQcSnckiSn9r_oCEHY-9A</recordid><startdate>20140104</startdate><enddate>20140104</enddate><creator>Agozzino, L</creator><creator>Castorina, P</creator><creator>Colangelo, P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140104</creationdate><title>Nuclear Structure Functions at Low-\(x\) in a Holographic Approach</title><author>Agozzino, L ; Castorina, P ; Colangelo, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20827926433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Gluons</topic><topic>Inelastic scattering</topic><topic>Mathematical analysis</topic><topic>Nuclear structure</topic><topic>Nuclei (nuclear physics)</topic><topic>Parameters</topic><topic>Quarks</topic><topic>Rescaling</topic><toplevel>online_resources</toplevel><creatorcontrib>Agozzino, L</creatorcontrib><creatorcontrib>Castorina, P</creatorcontrib><creatorcontrib>Colangelo, P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agozzino, L</au><au>Castorina, P</au><au>Colangelo, P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nuclear Structure Functions at Low-\(x\) in a Holographic Approach</atitle><jtitle>arXiv.org</jtitle><date>2014-01-04</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>Nuclear effects in deep inelastic scattering at low\(-x\) are phenomenologically described changing the typical dynamical and/or kinematical scales characterizing the free nucleon case. In a holographic approach, this rescaling is an analytical property of the computed structure function \(F_2(x,Q^2)\). This function is given by the sum of a conformal term and of a contribution due to quark confinement, depending on IR hard-wall parameter \(z_0\) and on the mean square distances, related to a parameter \(Q^\prime\), among quarks and gluons in the target. The holographic structure function per nucleon in a nucleus \(A\) is evaluated showing that a rescaling of the typical nucleon size, \(z_0\) and \(Q^\prime\), due to nuclear binding, can be reabsorbed in a \(Q^2\)-rescaling scheme. The difference between neutron and proton structure functions and the effects of the longitudinal structure functions can also be taken into account. The obtained theoretical results favourably compare with the experimental data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1401.0826</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2082792643
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Gluons
Inelastic scattering
Mathematical analysis
Nuclear structure
Nuclei (nuclear physics)
Parameters
Quarks
Rescaling
title Nuclear Structure Functions at Low-\(x\) in a Holographic Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nuclear%20Structure%20Functions%20at%20Low-%5C(x%5C)%20in%20a%20Holographic%20Approach&rft.jtitle=arXiv.org&rft.au=Agozzino,%20L&rft.date=2014-01-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1401.0826&rft_dat=%3Cproquest%3E2082792643%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20827926433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082792643&rft_id=info:pmid/&rfr_iscdi=true