Loading…

Rydberg atoms in hollow-core photonic crystal fibres

The exceptionally large polarisability of highly excited Rydberg atoms (six orders of magnitude higher than ground-state atoms) makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. If however they are to be used routinely in applications...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-02
Main Authors: Epple, G, Kleinbach, K S, Euser, T G, Joly, N Y, Pfau, T, Russell, P St J, Löw, R
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Epple, G
Kleinbach, K S
Euser, T G
Joly, N Y
Pfau, T
Russell, P St J
Löw, R
description The exceptionally large polarisability of highly excited Rydberg atoms (six orders of magnitude higher than ground-state atoms) makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. If however they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturised devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n = 40. Besides small energy level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.
doi_str_mv 10.48550/arxiv.1402.2195
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082904544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082904544</sourcerecordid><originalsourceid>FETCH-LOGICAL-a514-c2e3169f5b82e537b81bf1de32c78c3ccc098d539d4314763c539cc73ed1a19e3</originalsourceid><addsrcrecordid>eNotjc9LwzAYQIMgbMzdPQY8t-b7vqRNjjL8BQNBdh_p13TrqM1MOnX_vQM9vXd6T4hbUKW2xqh7n376rxK0whLBmSsxRyIorEaciWXOB6UUVjUaQ3Oh389tE9JO-il-ZNmPch-HIX4XHFOQx32c4tiz5HTOkx9k1zcp5Btx3fkhh-U_F2Lz9LhZvRTrt-fX1cO68AZ0wRgIKteZxmIwVDcWmg7aQMi1ZWJm5WxryLWaQNcV8cWZawoteHCBFuLuL3tM8fMU8rQ9xFMaL8ctKotOaaM1_QJJCUYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082904544</pqid></control><display><type>article</type><title>Rydberg atoms in hollow-core photonic crystal fibres</title><source>Publicly Available Content (ProQuest)</source><creator>Epple, G ; Kleinbach, K S ; Euser, T G ; Joly, N Y ; Pfau, T ; Russell, P St J ; Löw, R</creator><creatorcontrib>Epple, G ; Kleinbach, K S ; Euser, T G ; Joly, N Y ; Pfau, T ; Russell, P St J ; Löw, R</creatorcontrib><description>The exceptionally large polarisability of highly excited Rydberg atoms (six orders of magnitude higher than ground-state atoms) makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. If however they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturised devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n = 40. Besides small energy level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1402.2195</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Broadband ; Cesium ; Cesium vapor ; Computer simulation ; Crystal fibers ; Energy levels ; Photonic crystals ; Quantum computing ; Quantum optics ; Rydberg states</subject><ispartof>arXiv.org, 2014-02</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2082904544?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Epple, G</creatorcontrib><creatorcontrib>Kleinbach, K S</creatorcontrib><creatorcontrib>Euser, T G</creatorcontrib><creatorcontrib>Joly, N Y</creatorcontrib><creatorcontrib>Pfau, T</creatorcontrib><creatorcontrib>Russell, P St J</creatorcontrib><creatorcontrib>Löw, R</creatorcontrib><title>Rydberg atoms in hollow-core photonic crystal fibres</title><title>arXiv.org</title><description>The exceptionally large polarisability of highly excited Rydberg atoms (six orders of magnitude higher than ground-state atoms) makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. If however they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturised devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n = 40. Besides small energy level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.</description><subject>Broadband</subject><subject>Cesium</subject><subject>Cesium vapor</subject><subject>Computer simulation</subject><subject>Crystal fibers</subject><subject>Energy levels</subject><subject>Photonic crystals</subject><subject>Quantum computing</subject><subject>Quantum optics</subject><subject>Rydberg states</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc9LwzAYQIMgbMzdPQY8t-b7vqRNjjL8BQNBdh_p13TrqM1MOnX_vQM9vXd6T4hbUKW2xqh7n376rxK0whLBmSsxRyIorEaciWXOB6UUVjUaQ3Oh389tE9JO-il-ZNmPch-HIX4XHFOQx32c4tiz5HTOkx9k1zcp5Btx3fkhh-U_F2Lz9LhZvRTrt-fX1cO68AZ0wRgIKteZxmIwVDcWmg7aQMi1ZWJm5WxryLWaQNcV8cWZawoteHCBFuLuL3tM8fMU8rQ9xFMaL8ctKotOaaM1_QJJCUYw</recordid><startdate>20140210</startdate><enddate>20140210</enddate><creator>Epple, G</creator><creator>Kleinbach, K S</creator><creator>Euser, T G</creator><creator>Joly, N Y</creator><creator>Pfau, T</creator><creator>Russell, P St J</creator><creator>Löw, R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140210</creationdate><title>Rydberg atoms in hollow-core photonic crystal fibres</title><author>Epple, G ; Kleinbach, K S ; Euser, T G ; Joly, N Y ; Pfau, T ; Russell, P St J ; Löw, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a514-c2e3169f5b82e537b81bf1de32c78c3ccc098d539d4314763c539cc73ed1a19e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Broadband</topic><topic>Cesium</topic><topic>Cesium vapor</topic><topic>Computer simulation</topic><topic>Crystal fibers</topic><topic>Energy levels</topic><topic>Photonic crystals</topic><topic>Quantum computing</topic><topic>Quantum optics</topic><topic>Rydberg states</topic><toplevel>online_resources</toplevel><creatorcontrib>Epple, G</creatorcontrib><creatorcontrib>Kleinbach, K S</creatorcontrib><creatorcontrib>Euser, T G</creatorcontrib><creatorcontrib>Joly, N Y</creatorcontrib><creatorcontrib>Pfau, T</creatorcontrib><creatorcontrib>Russell, P St J</creatorcontrib><creatorcontrib>Löw, R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epple, G</au><au>Kleinbach, K S</au><au>Euser, T G</au><au>Joly, N Y</au><au>Pfau, T</au><au>Russell, P St J</au><au>Löw, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rydberg atoms in hollow-core photonic crystal fibres</atitle><jtitle>arXiv.org</jtitle><date>2014-02-10</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>The exceptionally large polarisability of highly excited Rydberg atoms (six orders of magnitude higher than ground-state atoms) makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. If however they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturised devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n = 40. Besides small energy level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1402.2195</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2082904544
source Publicly Available Content (ProQuest)
subjects Broadband
Cesium
Cesium vapor
Computer simulation
Crystal fibers
Energy levels
Photonic crystals
Quantum computing
Quantum optics
Rydberg states
title Rydberg atoms in hollow-core photonic crystal fibres
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rydberg%20atoms%20in%20hollow-core%20photonic%20crystal%20fibres&rft.jtitle=arXiv.org&rft.au=Epple,%20G&rft.date=2014-02-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1402.2195&rft_dat=%3Cproquest%3E2082904544%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a514-c2e3169f5b82e537b81bf1de32c78c3ccc098d539d4314763c539cc73ed1a19e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082904544&rft_id=info:pmid/&rfr_iscdi=true