Loading…
Rydberg atoms in hollow-core photonic crystal fibres
The exceptionally large polarisability of highly excited Rydberg atoms (six orders of magnitude higher than ground-state atoms) makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. If however they are to be used routinely in applications...
Saved in:
Published in: | arXiv.org 2014-02 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Epple, G Kleinbach, K S Euser, T G Joly, N Y Pfau, T Russell, P St J Löw, R |
description | The exceptionally large polarisability of highly excited Rydberg atoms (six orders of magnitude higher than ground-state atoms) makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. If however they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturised devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n = 40. Besides small energy level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems. |
doi_str_mv | 10.48550/arxiv.1402.2195 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082904544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082904544</sourcerecordid><originalsourceid>FETCH-LOGICAL-a514-c2e3169f5b82e537b81bf1de32c78c3ccc098d539d4314763c539cc73ed1a19e3</originalsourceid><addsrcrecordid>eNotjc9LwzAYQIMgbMzdPQY8t-b7vqRNjjL8BQNBdh_p13TrqM1MOnX_vQM9vXd6T4hbUKW2xqh7n376rxK0whLBmSsxRyIorEaciWXOB6UUVjUaQ3Oh389tE9JO-il-ZNmPch-HIX4XHFOQx32c4tiz5HTOkx9k1zcp5Btx3fkhh-U_F2Lz9LhZvRTrt-fX1cO68AZ0wRgIKteZxmIwVDcWmg7aQMi1ZWJm5WxryLWaQNcV8cWZawoteHCBFuLuL3tM8fMU8rQ9xFMaL8ctKotOaaM1_QJJCUYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082904544</pqid></control><display><type>article</type><title>Rydberg atoms in hollow-core photonic crystal fibres</title><source>Publicly Available Content (ProQuest)</source><creator>Epple, G ; Kleinbach, K S ; Euser, T G ; Joly, N Y ; Pfau, T ; Russell, P St J ; Löw, R</creator><creatorcontrib>Epple, G ; Kleinbach, K S ; Euser, T G ; Joly, N Y ; Pfau, T ; Russell, P St J ; Löw, R</creatorcontrib><description>The exceptionally large polarisability of highly excited Rydberg atoms (six orders of magnitude higher than ground-state atoms) makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. If however they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturised devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n = 40. Besides small energy level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1402.2195</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Broadband ; Cesium ; Cesium vapor ; Computer simulation ; Crystal fibers ; Energy levels ; Photonic crystals ; Quantum computing ; Quantum optics ; Rydberg states</subject><ispartof>arXiv.org, 2014-02</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2082904544?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Epple, G</creatorcontrib><creatorcontrib>Kleinbach, K S</creatorcontrib><creatorcontrib>Euser, T G</creatorcontrib><creatorcontrib>Joly, N Y</creatorcontrib><creatorcontrib>Pfau, T</creatorcontrib><creatorcontrib>Russell, P St J</creatorcontrib><creatorcontrib>Löw, R</creatorcontrib><title>Rydberg atoms in hollow-core photonic crystal fibres</title><title>arXiv.org</title><description>The exceptionally large polarisability of highly excited Rydberg atoms (six orders of magnitude higher than ground-state atoms) makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. If however they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturised devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n = 40. Besides small energy level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.</description><subject>Broadband</subject><subject>Cesium</subject><subject>Cesium vapor</subject><subject>Computer simulation</subject><subject>Crystal fibers</subject><subject>Energy levels</subject><subject>Photonic crystals</subject><subject>Quantum computing</subject><subject>Quantum optics</subject><subject>Rydberg states</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc9LwzAYQIMgbMzdPQY8t-b7vqRNjjL8BQNBdh_p13TrqM1MOnX_vQM9vXd6T4hbUKW2xqh7n376rxK0whLBmSsxRyIorEaciWXOB6UUVjUaQ3Oh389tE9JO-il-ZNmPch-HIX4XHFOQx32c4tiz5HTOkx9k1zcp5Btx3fkhh-U_F2Lz9LhZvRTrt-fX1cO68AZ0wRgIKteZxmIwVDcWmg7aQMi1ZWJm5WxryLWaQNcV8cWZawoteHCBFuLuL3tM8fMU8rQ9xFMaL8ctKotOaaM1_QJJCUYw</recordid><startdate>20140210</startdate><enddate>20140210</enddate><creator>Epple, G</creator><creator>Kleinbach, K S</creator><creator>Euser, T G</creator><creator>Joly, N Y</creator><creator>Pfau, T</creator><creator>Russell, P St J</creator><creator>Löw, R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140210</creationdate><title>Rydberg atoms in hollow-core photonic crystal fibres</title><author>Epple, G ; Kleinbach, K S ; Euser, T G ; Joly, N Y ; Pfau, T ; Russell, P St J ; Löw, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a514-c2e3169f5b82e537b81bf1de32c78c3ccc098d539d4314763c539cc73ed1a19e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Broadband</topic><topic>Cesium</topic><topic>Cesium vapor</topic><topic>Computer simulation</topic><topic>Crystal fibers</topic><topic>Energy levels</topic><topic>Photonic crystals</topic><topic>Quantum computing</topic><topic>Quantum optics</topic><topic>Rydberg states</topic><toplevel>online_resources</toplevel><creatorcontrib>Epple, G</creatorcontrib><creatorcontrib>Kleinbach, K S</creatorcontrib><creatorcontrib>Euser, T G</creatorcontrib><creatorcontrib>Joly, N Y</creatorcontrib><creatorcontrib>Pfau, T</creatorcontrib><creatorcontrib>Russell, P St J</creatorcontrib><creatorcontrib>Löw, R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epple, G</au><au>Kleinbach, K S</au><au>Euser, T G</au><au>Joly, N Y</au><au>Pfau, T</au><au>Russell, P St J</au><au>Löw, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rydberg atoms in hollow-core photonic crystal fibres</atitle><jtitle>arXiv.org</jtitle><date>2014-02-10</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>The exceptionally large polarisability of highly excited Rydberg atoms (six orders of magnitude higher than ground-state atoms) makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. If however they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturised devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n = 40. Besides small energy level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1402.2195</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2082904544 |
source | Publicly Available Content (ProQuest) |
subjects | Broadband Cesium Cesium vapor Computer simulation Crystal fibers Energy levels Photonic crystals Quantum computing Quantum optics Rydberg states |
title | Rydberg atoms in hollow-core photonic crystal fibres |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rydberg%20atoms%20in%20hollow-core%20photonic%20crystal%20fibres&rft.jtitle=arXiv.org&rft.au=Epple,%20G&rft.date=2014-02-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1402.2195&rft_dat=%3Cproquest%3E2082904544%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a514-c2e3169f5b82e537b81bf1de32c78c3ccc098d539d4314763c539cc73ed1a19e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082904544&rft_id=info:pmid/&rfr_iscdi=true |