Loading…

Dark-matter halo mergers as a fertile environment for low-mass Population III star formation

While Population III stars are typically thought to be massive, pathways towards lower-mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter halos. The mergers can lead to a high ionization degree...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-04
Main Authors: Bovino, S, Latif, M A, Grassi, T, Schleicher, D R G
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bovino, S
Latif, M A
Grassi, T
Schleicher, D R G
description While Population III stars are typically thought to be massive, pathways towards lower-mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter halos. The mergers can lead to a high ionization degree catalysing the formation of HD molecules and may cool the gas down to the cosmic microwave background (CMB) temperature. In this paper, we investigate the merging of mini-halos with masses of a few 10\(^5\) M\(_\odot\) and explore the feasibility of this scenario. We have performed three-dimensional cosmological hydrodynamics calculations with the ENZO code, solving the thermal and chemical evolution of the gas by employing the astrochemistry package KROME. Our results show that the HD abundance is increased by two orders of magnitude compared to the no-merging case and the halo cools down to \(\sim\)60 K triggering fragmentation. Based on Jeans estimates the expected stellar masses are about 10 M\(_\odot\). Our findings show that the merging scenario is a potential pathway for the formation of low-mass stars.
doi_str_mv 10.48550/arxiv.1402.4403
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082905150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082905150</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510-5e92b9c51cce4f69e5861782998e73cb8d81b7b8d11a2b1b6a4f556bd5209d1e3</originalsourceid><addsrcrecordid>eNotjdtLwzAYxYMgOObefQz43Jrb1yaPMm-FgT7sURhJ-1U722Ym6fTPt1PhwA8O50LIFWe50gDsxobv7phzxUSuFJNnZCGk5JlWQlyQVYx7xpgoSgEgF-T1zoaPbLApYaDvtvd0wPCGIVI7i7YYUtcjxfHYBT8OOCba-kB7_zWXYqQv_jD1NnV-pFVV0ZhsOAWGX-uSnLe2j7j655JsH-6366ds8_xYrW83mQXOMkAjnKmB1zWqtjAIuuClFsZoLGXtdKO5K2dwboXjrrCqBShcA4KZhqNckuu_2UPwnxPGtNv7KYzz406weYcBByZ_AD8hVLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082905150</pqid></control><display><type>article</type><title>Dark-matter halo mergers as a fertile environment for low-mass Population III star formation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bovino, S ; Latif, M A ; Grassi, T ; Schleicher, D R G</creator><creatorcontrib>Bovino, S ; Latif, M A ; Grassi, T ; Schleicher, D R G</creatorcontrib><description>While Population III stars are typically thought to be massive, pathways towards lower-mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter halos. The mergers can lead to a high ionization degree catalysing the formation of HD molecules and may cool the gas down to the cosmic microwave background (CMB) temperature. In this paper, we investigate the merging of mini-halos with masses of a few 10\(^5\) M\(_\odot\) and explore the feasibility of this scenario. We have performed three-dimensional cosmological hydrodynamics calculations with the ENZO code, solving the thermal and chemical evolution of the gas by employing the astrochemistry package KROME. Our results show that the HD abundance is increased by two orders of magnitude compared to the no-merging case and the halo cools down to \(\sim\)60 K triggering fragmentation. Based on Jeans estimates the expected stellar masses are about 10 M\(_\odot\). Our findings show that the merging scenario is a potential pathway for the formation of low-mass stars.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1402.4403</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Abundance ; Astrochemistry ; Chemical evolution ; Cooling ; Cosmic microwave background ; Fluid dynamics ; Fluid flow ; Halos ; Hydrodynamics ; Ionization ; Low mass stars ; Organic chemistry ; Population III stars ; Star &amp; galaxy formation ; Star formation</subject><ispartof>arXiv.org, 2014-04</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2082905150?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Bovino, S</creatorcontrib><creatorcontrib>Latif, M A</creatorcontrib><creatorcontrib>Grassi, T</creatorcontrib><creatorcontrib>Schleicher, D R G</creatorcontrib><title>Dark-matter halo mergers as a fertile environment for low-mass Population III star formation</title><title>arXiv.org</title><description>While Population III stars are typically thought to be massive, pathways towards lower-mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter halos. The mergers can lead to a high ionization degree catalysing the formation of HD molecules and may cool the gas down to the cosmic microwave background (CMB) temperature. In this paper, we investigate the merging of mini-halos with masses of a few 10\(^5\) M\(_\odot\) and explore the feasibility of this scenario. We have performed three-dimensional cosmological hydrodynamics calculations with the ENZO code, solving the thermal and chemical evolution of the gas by employing the astrochemistry package KROME. Our results show that the HD abundance is increased by two orders of magnitude compared to the no-merging case and the halo cools down to \(\sim\)60 K triggering fragmentation. Based on Jeans estimates the expected stellar masses are about 10 M\(_\odot\). Our findings show that the merging scenario is a potential pathway for the formation of low-mass stars.</description><subject>Abundance</subject><subject>Astrochemistry</subject><subject>Chemical evolution</subject><subject>Cooling</subject><subject>Cosmic microwave background</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Halos</subject><subject>Hydrodynamics</subject><subject>Ionization</subject><subject>Low mass stars</subject><subject>Organic chemistry</subject><subject>Population III stars</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjdtLwzAYxYMgOObefQz43Jrb1yaPMm-FgT7sURhJ-1U722Ym6fTPt1PhwA8O50LIFWe50gDsxobv7phzxUSuFJNnZCGk5JlWQlyQVYx7xpgoSgEgF-T1zoaPbLApYaDvtvd0wPCGIVI7i7YYUtcjxfHYBT8OOCba-kB7_zWXYqQv_jD1NnV-pFVV0ZhsOAWGX-uSnLe2j7j655JsH-6366ds8_xYrW83mQXOMkAjnKmB1zWqtjAIuuClFsZoLGXtdKO5K2dwboXjrrCqBShcA4KZhqNckuu_2UPwnxPGtNv7KYzz406weYcBByZ_AD8hVLI</recordid><startdate>20140408</startdate><enddate>20140408</enddate><creator>Bovino, S</creator><creator>Latif, M A</creator><creator>Grassi, T</creator><creator>Schleicher, D R G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140408</creationdate><title>Dark-matter halo mergers as a fertile environment for low-mass Population III star formation</title><author>Bovino, S ; Latif, M A ; Grassi, T ; Schleicher, D R G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510-5e92b9c51cce4f69e5861782998e73cb8d81b7b8d11a2b1b6a4f556bd5209d1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abundance</topic><topic>Astrochemistry</topic><topic>Chemical evolution</topic><topic>Cooling</topic><topic>Cosmic microwave background</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Halos</topic><topic>Hydrodynamics</topic><topic>Ionization</topic><topic>Low mass stars</topic><topic>Organic chemistry</topic><topic>Population III stars</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation</topic><toplevel>online_resources</toplevel><creatorcontrib>Bovino, S</creatorcontrib><creatorcontrib>Latif, M A</creatorcontrib><creatorcontrib>Grassi, T</creatorcontrib><creatorcontrib>Schleicher, D R G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bovino, S</au><au>Latif, M A</au><au>Grassi, T</au><au>Schleicher, D R G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark-matter halo mergers as a fertile environment for low-mass Population III star formation</atitle><jtitle>arXiv.org</jtitle><date>2014-04-08</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>While Population III stars are typically thought to be massive, pathways towards lower-mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter halos. The mergers can lead to a high ionization degree catalysing the formation of HD molecules and may cool the gas down to the cosmic microwave background (CMB) temperature. In this paper, we investigate the merging of mini-halos with masses of a few 10\(^5\) M\(_\odot\) and explore the feasibility of this scenario. We have performed three-dimensional cosmological hydrodynamics calculations with the ENZO code, solving the thermal and chemical evolution of the gas by employing the astrochemistry package KROME. Our results show that the HD abundance is increased by two orders of magnitude compared to the no-merging case and the halo cools down to \(\sim\)60 K triggering fragmentation. Based on Jeans estimates the expected stellar masses are about 10 M\(_\odot\). Our findings show that the merging scenario is a potential pathway for the formation of low-mass stars.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1402.4403</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2082905150
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Abundance
Astrochemistry
Chemical evolution
Cooling
Cosmic microwave background
Fluid dynamics
Fluid flow
Halos
Hydrodynamics
Ionization
Low mass stars
Organic chemistry
Population III stars
Star & galaxy formation
Star formation
title Dark-matter halo mergers as a fertile environment for low-mass Population III star formation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark-matter%20halo%20mergers%20as%20a%20fertile%20environment%20for%20low-mass%20Population%20III%20star%20formation&rft.jtitle=arXiv.org&rft.au=Bovino,%20S&rft.date=2014-04-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1402.4403&rft_dat=%3Cproquest%3E2082905150%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a510-5e92b9c51cce4f69e5861782998e73cb8d81b7b8d11a2b1b6a4f556bd5209d1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082905150&rft_id=info:pmid/&rfr_iscdi=true