Loading…

Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain

The steady state after a quantum quench from the Néel state to the anisotropic Heisenberg model for spin chains is investigated. Two methods that aim to describe the postquench non-thermal equilibrium, the generalized Gibbs ensemble and the quench action approach, are discussed and contrasted. Using...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-12
Main Authors: Brockmann, Michael, Wouters, Bram, Fioretto, Davide, De Nardis, Jacopo, Vlijm, Rogier, Caux, Jean-Sébastien
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Brockmann, Michael
Wouters, Bram
Fioretto, Davide
De Nardis, Jacopo
Vlijm, Rogier
Caux, Jean-Sébastien
description The steady state after a quantum quench from the Néel state to the anisotropic Heisenberg model for spin chains is investigated. Two methods that aim to describe the postquench non-thermal equilibrium, the generalized Gibbs ensemble and the quench action approach, are discussed and contrasted. Using the recent implementation of the quench action approach for this Néel-to-XXZ quench, we obtain an exact description of the steady state in terms of Bethe root densities, for which we give explicit analytical expressions. Furthermore, by developing a systematic small-quench expansion around the antiferromagnetic Ising limit, we analytically investigate the differences between the predictions of the two methods in terms of densities and postquench equilibrium expectation values of local physical observables. Finally, we discuss the details of the quench action solution for the quench to the isotropic Heisenberg spin chain. For this case we validate the underlying assumptions of the quench action approach by studying the large-system-size behavior of the overlaps between Bethe states and the Néel state.
doi_str_mv 10.48550/arxiv.1408.5075
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082955298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082955298</sourcerecordid><originalsourceid>FETCH-proquest_journals_20829552983</originalsourceid><addsrcrecordid>eNqNjEEKwjAURIMgKOre5QfXrclvY-NaFFei4KK4KaFEm1KSmqTilTyHF7OIB3A1zJvHEDJnNE4F53Qp3VM_YpZSEXOa8QEZY5KwSKSIIzLzvqaU4ipDzpMxOZ46ZcoKZBm0NSDb1lnZ96t14FSjpNfmBqFScHi_VAM-yKBAm2C_0LfaRGyJkOcXKCupzZQMr7LxavbLCVnstufNPuqP753yoaht50w_FUgFrjnHtUj-sz48LERY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082955298</pqid></control><display><type>article</type><title>Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain</title><source>Publicly Available Content Database</source><creator>Brockmann, Michael ; Wouters, Bram ; Fioretto, Davide ; De Nardis, Jacopo ; Vlijm, Rogier ; Caux, Jean-Sébastien</creator><creatorcontrib>Brockmann, Michael ; Wouters, Bram ; Fioretto, Davide ; De Nardis, Jacopo ; Vlijm, Rogier ; Caux, Jean-Sébastien</creatorcontrib><description>The steady state after a quantum quench from the Néel state to the anisotropic Heisenberg model for spin chains is investigated. Two methods that aim to describe the postquench non-thermal equilibrium, the generalized Gibbs ensemble and the quench action approach, are discussed and contrasted. Using the recent implementation of the quench action approach for this Néel-to-XXZ quench, we obtain an exact description of the steady state in terms of Bethe root densities, for which we give explicit analytical expressions. Furthermore, by developing a systematic small-quench expansion around the antiferromagnetic Ising limit, we analytically investigate the differences between the predictions of the two methods in terms of densities and postquench equilibrium expectation values of local physical observables. Finally, we discuss the details of the quench action solution for the quench to the isotropic Heisenberg spin chain. For this case we validate the underlying assumptions of the quench action approach by studying the large-system-size behavior of the overlaps between Bethe states and the Néel state.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1408.5075</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antiferromagnetism ; Chains ; Heisenberg theory ; Ising model ; Mathematical analysis ; Statistical models ; Steady state</subject><ispartof>arXiv.org, 2014-12</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2082955298?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Brockmann, Michael</creatorcontrib><creatorcontrib>Wouters, Bram</creatorcontrib><creatorcontrib>Fioretto, Davide</creatorcontrib><creatorcontrib>De Nardis, Jacopo</creatorcontrib><creatorcontrib>Vlijm, Rogier</creatorcontrib><creatorcontrib>Caux, Jean-Sébastien</creatorcontrib><title>Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain</title><title>arXiv.org</title><description>The steady state after a quantum quench from the Néel state to the anisotropic Heisenberg model for spin chains is investigated. Two methods that aim to describe the postquench non-thermal equilibrium, the generalized Gibbs ensemble and the quench action approach, are discussed and contrasted. Using the recent implementation of the quench action approach for this Néel-to-XXZ quench, we obtain an exact description of the steady state in terms of Bethe root densities, for which we give explicit analytical expressions. Furthermore, by developing a systematic small-quench expansion around the antiferromagnetic Ising limit, we analytically investigate the differences between the predictions of the two methods in terms of densities and postquench equilibrium expectation values of local physical observables. Finally, we discuss the details of the quench action solution for the quench to the isotropic Heisenberg spin chain. For this case we validate the underlying assumptions of the quench action approach by studying the large-system-size behavior of the overlaps between Bethe states and the Néel state.</description><subject>Antiferromagnetism</subject><subject>Chains</subject><subject>Heisenberg theory</subject><subject>Ising model</subject><subject>Mathematical analysis</subject><subject>Statistical models</subject><subject>Steady state</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEEKwjAURIMgKOre5QfXrclvY-NaFFei4KK4KaFEm1KSmqTilTyHF7OIB3A1zJvHEDJnNE4F53Qp3VM_YpZSEXOa8QEZY5KwSKSIIzLzvqaU4ipDzpMxOZ46ZcoKZBm0NSDb1lnZ96t14FSjpNfmBqFScHi_VAM-yKBAm2C_0LfaRGyJkOcXKCupzZQMr7LxavbLCVnstufNPuqP753yoaht50w_FUgFrjnHtUj-sz48LERY</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Brockmann, Michael</creator><creator>Wouters, Bram</creator><creator>Fioretto, Davide</creator><creator>De Nardis, Jacopo</creator><creator>Vlijm, Rogier</creator><creator>Caux, Jean-Sébastien</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141215</creationdate><title>Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain</title><author>Brockmann, Michael ; Wouters, Bram ; Fioretto, Davide ; De Nardis, Jacopo ; Vlijm, Rogier ; Caux, Jean-Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20829552983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antiferromagnetism</topic><topic>Chains</topic><topic>Heisenberg theory</topic><topic>Ising model</topic><topic>Mathematical analysis</topic><topic>Statistical models</topic><topic>Steady state</topic><toplevel>online_resources</toplevel><creatorcontrib>Brockmann, Michael</creatorcontrib><creatorcontrib>Wouters, Bram</creatorcontrib><creatorcontrib>Fioretto, Davide</creatorcontrib><creatorcontrib>De Nardis, Jacopo</creatorcontrib><creatorcontrib>Vlijm, Rogier</creatorcontrib><creatorcontrib>Caux, Jean-Sébastien</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brockmann, Michael</au><au>Wouters, Bram</au><au>Fioretto, Davide</au><au>De Nardis, Jacopo</au><au>Vlijm, Rogier</au><au>Caux, Jean-Sébastien</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain</atitle><jtitle>arXiv.org</jtitle><date>2014-12-15</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>The steady state after a quantum quench from the Néel state to the anisotropic Heisenberg model for spin chains is investigated. Two methods that aim to describe the postquench non-thermal equilibrium, the generalized Gibbs ensemble and the quench action approach, are discussed and contrasted. Using the recent implementation of the quench action approach for this Néel-to-XXZ quench, we obtain an exact description of the steady state in terms of Bethe root densities, for which we give explicit analytical expressions. Furthermore, by developing a systematic small-quench expansion around the antiferromagnetic Ising limit, we analytically investigate the differences between the predictions of the two methods in terms of densities and postquench equilibrium expectation values of local physical observables. Finally, we discuss the details of the quench action solution for the quench to the isotropic Heisenberg spin chain. For this case we validate the underlying assumptions of the quench action approach by studying the large-system-size behavior of the overlaps between Bethe states and the Néel state.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1408.5075</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2082955298
source Publicly Available Content Database
subjects Antiferromagnetism
Chains
Heisenberg theory
Ising model
Mathematical analysis
Statistical models
Steady state
title Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quench%20action%20approach%20for%20releasing%20the%20N%C3%A9el%20state%20into%20the%20spin-1/2%20XXZ%20chain&rft.jtitle=arXiv.org&rft.au=Brockmann,%20Michael&rft.date=2014-12-15&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1408.5075&rft_dat=%3Cproquest%3E2082955298%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20829552983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2082955298&rft_id=info:pmid/&rfr_iscdi=true