Loading…

Numerical Study of Crystal Size Distribution in Polynuclear Growth

The crystal size distribution in polynuclear growth is numerically studied using a coupled map lattice model. The width of the size distribution depends on c/D, where c is the growth rate at interface sites and \(D\) is the diffusion constant. When c/D is sufficiently small, the width W increases li...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-05
Main Authors: Sakaguchi, Hidetsugu, Ohishi, Takuma
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sakaguchi, Hidetsugu
Ohishi, Takuma
description The crystal size distribution in polynuclear growth is numerically studied using a coupled map lattice model. The width of the size distribution depends on c/D, where c is the growth rate at interface sites and \(D\) is the diffusion constant. When c/D is sufficiently small, the width W increases linearly with c/D and saturates at large c/D. Monodisperse square and cubic crystals are obtained respectively on square and cubic lattices when c/D is sufficiently small for a small kinetic parameter b. The linear dependence of W on c/D in a parameter range of small c/D is explained by the eigenfunction for the first eigenvalue in a two-dimensional model and a mean-field model. For the mean-field model, the slope of the linear dependence is evaluated theoretically.
doi_str_mv 10.48550/arxiv.1505.00309
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083055402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083055402</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-ccda32b9e46cd35d1d0ccc75ce181a1b8451458eb1cd457d3fda9d8815c5032c3</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgWGo_wF3A9dSbx-1kljpqKxQV7L5kkgymjBPNQx2_XkVXB87iHELOGCylQoQLHT_9-5Ih4BJAQHNEZlwIVinJ-QlZpHQAAL6qOaKYkav78uKiN3qgT7nYiYaetnFK-Vf4L0evfcrRdyX7MFI_0scwTGMxg9ORrmP4yM-n5LjXQ3KLf87J7vZm126q7cP6rr3cVho5r4yxWvCucXJlrEDLLBhjajSOKaZZpyQyicp1zFiJtRW91Y1ViqFBENyIOTn_y77G8FZcyvtDKHH8Oe45KAGIErj4BmWcTB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083055402</pqid></control><display><type>article</type><title>Numerical Study of Crystal Size Distribution in Polynuclear Growth</title><source>Publicly Available Content (ProQuest)</source><creator>Sakaguchi, Hidetsugu ; Ohishi, Takuma</creator><creatorcontrib>Sakaguchi, Hidetsugu ; Ohishi, Takuma</creatorcontrib><description>The crystal size distribution in polynuclear growth is numerically studied using a coupled map lattice model. The width of the size distribution depends on c/D, where c is the growth rate at interface sites and \(D\) is the diffusion constant. When c/D is sufficiently small, the width W increases linearly with c/D and saturates at large c/D. Monodisperse square and cubic crystals are obtained respectively on square and cubic lattices when c/D is sufficiently small for a small kinetic parameter b. The linear dependence of W on c/D in a parameter range of small c/D is explained by the eigenfunction for the first eigenvalue in a two-dimensional model and a mean-field model. For the mean-field model, the slope of the linear dependence is evaluated theoretically.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1505.00309</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Crystal growth ; Crystal lattices ; Crystals ; Dependence ; Diffusion rate ; Eigenvalues ; Eigenvectors ; Lattices (mathematics) ; Mathematical models ; Parameters ; Size distribution ; Two dimensional models</subject><ispartof>arXiv.org, 2015-05</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083055402?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Sakaguchi, Hidetsugu</creatorcontrib><creatorcontrib>Ohishi, Takuma</creatorcontrib><title>Numerical Study of Crystal Size Distribution in Polynuclear Growth</title><title>arXiv.org</title><description>The crystal size distribution in polynuclear growth is numerically studied using a coupled map lattice model. The width of the size distribution depends on c/D, where c is the growth rate at interface sites and \(D\) is the diffusion constant. When c/D is sufficiently small, the width W increases linearly with c/D and saturates at large c/D. Monodisperse square and cubic crystals are obtained respectively on square and cubic lattices when c/D is sufficiently small for a small kinetic parameter b. The linear dependence of W on c/D in a parameter range of small c/D is explained by the eigenfunction for the first eigenvalue in a two-dimensional model and a mean-field model. For the mean-field model, the slope of the linear dependence is evaluated theoretically.</description><subject>Crystal growth</subject><subject>Crystal lattices</subject><subject>Crystals</subject><subject>Dependence</subject><subject>Diffusion rate</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Lattices (mathematics)</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Size distribution</subject><subject>Two dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgWGo_wF3A9dSbx-1kljpqKxQV7L5kkgymjBPNQx2_XkVXB87iHELOGCylQoQLHT_9-5Ih4BJAQHNEZlwIVinJ-QlZpHQAAL6qOaKYkav78uKiN3qgT7nYiYaetnFK-Vf4L0evfcrRdyX7MFI_0scwTGMxg9ORrmP4yM-n5LjXQ3KLf87J7vZm126q7cP6rr3cVho5r4yxWvCucXJlrEDLLBhjajSOKaZZpyQyicp1zFiJtRW91Y1ViqFBENyIOTn_y77G8FZcyvtDKHH8Oe45KAGIErj4BmWcTB4</recordid><startdate>20150502</startdate><enddate>20150502</enddate><creator>Sakaguchi, Hidetsugu</creator><creator>Ohishi, Takuma</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150502</creationdate><title>Numerical Study of Crystal Size Distribution in Polynuclear Growth</title><author>Sakaguchi, Hidetsugu ; Ohishi, Takuma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-ccda32b9e46cd35d1d0ccc75ce181a1b8451458eb1cd457d3fda9d8815c5032c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Crystal growth</topic><topic>Crystal lattices</topic><topic>Crystals</topic><topic>Dependence</topic><topic>Diffusion rate</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Lattices (mathematics)</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Size distribution</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Sakaguchi, Hidetsugu</creatorcontrib><creatorcontrib>Ohishi, Takuma</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakaguchi, Hidetsugu</au><au>Ohishi, Takuma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study of Crystal Size Distribution in Polynuclear Growth</atitle><jtitle>arXiv.org</jtitle><date>2015-05-02</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>The crystal size distribution in polynuclear growth is numerically studied using a coupled map lattice model. The width of the size distribution depends on c/D, where c is the growth rate at interface sites and \(D\) is the diffusion constant. When c/D is sufficiently small, the width W increases linearly with c/D and saturates at large c/D. Monodisperse square and cubic crystals are obtained respectively on square and cubic lattices when c/D is sufficiently small for a small kinetic parameter b. The linear dependence of W on c/D in a parameter range of small c/D is explained by the eigenfunction for the first eigenvalue in a two-dimensional model and a mean-field model. For the mean-field model, the slope of the linear dependence is evaluated theoretically.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1505.00309</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083055402
source Publicly Available Content (ProQuest)
subjects Crystal growth
Crystal lattices
Crystals
Dependence
Diffusion rate
Eigenvalues
Eigenvectors
Lattices (mathematics)
Mathematical models
Parameters
Size distribution
Two dimensional models
title Numerical Study of Crystal Size Distribution in Polynuclear Growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20of%20Crystal%20Size%20Distribution%20in%20Polynuclear%20Growth&rft.jtitle=arXiv.org&rft.au=Sakaguchi,%20Hidetsugu&rft.date=2015-05-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1505.00309&rft_dat=%3Cproquest%3E2083055402%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-ccda32b9e46cd35d1d0ccc75ce181a1b8451458eb1cd457d3fda9d8815c5032c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083055402&rft_id=info:pmid/&rfr_iscdi=true