Loading…
Numerical Study of Crystal Size Distribution in Polynuclear Growth
The crystal size distribution in polynuclear growth is numerically studied using a coupled map lattice model. The width of the size distribution depends on c/D, where c is the growth rate at interface sites and \(D\) is the diffusion constant. When c/D is sufficiently small, the width W increases li...
Saved in:
Published in: | arXiv.org 2015-05 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sakaguchi, Hidetsugu Ohishi, Takuma |
description | The crystal size distribution in polynuclear growth is numerically studied using a coupled map lattice model. The width of the size distribution depends on c/D, where c is the growth rate at interface sites and \(D\) is the diffusion constant. When c/D is sufficiently small, the width W increases linearly with c/D and saturates at large c/D. Monodisperse square and cubic crystals are obtained respectively on square and cubic lattices when c/D is sufficiently small for a small kinetic parameter b. The linear dependence of W on c/D in a parameter range of small c/D is explained by the eigenfunction for the first eigenvalue in a two-dimensional model and a mean-field model. For the mean-field model, the slope of the linear dependence is evaluated theoretically. |
doi_str_mv | 10.48550/arxiv.1505.00309 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083055402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083055402</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-ccda32b9e46cd35d1d0ccc75ce181a1b8451458eb1cd457d3fda9d8815c5032c3</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgWGo_wF3A9dSbx-1kljpqKxQV7L5kkgymjBPNQx2_XkVXB87iHELOGCylQoQLHT_9-5Ih4BJAQHNEZlwIVinJ-QlZpHQAAL6qOaKYkav78uKiN3qgT7nYiYaetnFK-Vf4L0evfcrRdyX7MFI_0scwTGMxg9ORrmP4yM-n5LjXQ3KLf87J7vZm126q7cP6rr3cVho5r4yxWvCucXJlrEDLLBhjajSOKaZZpyQyicp1zFiJtRW91Y1ViqFBENyIOTn_y77G8FZcyvtDKHH8Oe45KAGIErj4BmWcTB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083055402</pqid></control><display><type>article</type><title>Numerical Study of Crystal Size Distribution in Polynuclear Growth</title><source>Publicly Available Content (ProQuest)</source><creator>Sakaguchi, Hidetsugu ; Ohishi, Takuma</creator><creatorcontrib>Sakaguchi, Hidetsugu ; Ohishi, Takuma</creatorcontrib><description>The crystal size distribution in polynuclear growth is numerically studied using a coupled map lattice model. The width of the size distribution depends on c/D, where c is the growth rate at interface sites and \(D\) is the diffusion constant. When c/D is sufficiently small, the width W increases linearly with c/D and saturates at large c/D. Monodisperse square and cubic crystals are obtained respectively on square and cubic lattices when c/D is sufficiently small for a small kinetic parameter b. The linear dependence of W on c/D in a parameter range of small c/D is explained by the eigenfunction for the first eigenvalue in a two-dimensional model and a mean-field model. For the mean-field model, the slope of the linear dependence is evaluated theoretically.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1505.00309</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Crystal growth ; Crystal lattices ; Crystals ; Dependence ; Diffusion rate ; Eigenvalues ; Eigenvectors ; Lattices (mathematics) ; Mathematical models ; Parameters ; Size distribution ; Two dimensional models</subject><ispartof>arXiv.org, 2015-05</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083055402?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Sakaguchi, Hidetsugu</creatorcontrib><creatorcontrib>Ohishi, Takuma</creatorcontrib><title>Numerical Study of Crystal Size Distribution in Polynuclear Growth</title><title>arXiv.org</title><description>The crystal size distribution in polynuclear growth is numerically studied using a coupled map lattice model. The width of the size distribution depends on c/D, where c is the growth rate at interface sites and \(D\) is the diffusion constant. When c/D is sufficiently small, the width W increases linearly with c/D and saturates at large c/D. Monodisperse square and cubic crystals are obtained respectively on square and cubic lattices when c/D is sufficiently small for a small kinetic parameter b. The linear dependence of W on c/D in a parameter range of small c/D is explained by the eigenfunction for the first eigenvalue in a two-dimensional model and a mean-field model. For the mean-field model, the slope of the linear dependence is evaluated theoretically.</description><subject>Crystal growth</subject><subject>Crystal lattices</subject><subject>Crystals</subject><subject>Dependence</subject><subject>Diffusion rate</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Lattices (mathematics)</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Size distribution</subject><subject>Two dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgWGo_wF3A9dSbx-1kljpqKxQV7L5kkgymjBPNQx2_XkVXB87iHELOGCylQoQLHT_9-5Ih4BJAQHNEZlwIVinJ-QlZpHQAAL6qOaKYkav78uKiN3qgT7nYiYaetnFK-Vf4L0evfcrRdyX7MFI_0scwTGMxg9ORrmP4yM-n5LjXQ3KLf87J7vZm126q7cP6rr3cVho5r4yxWvCucXJlrEDLLBhjajSOKaZZpyQyicp1zFiJtRW91Y1ViqFBENyIOTn_y77G8FZcyvtDKHH8Oe45KAGIErj4BmWcTB4</recordid><startdate>20150502</startdate><enddate>20150502</enddate><creator>Sakaguchi, Hidetsugu</creator><creator>Ohishi, Takuma</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150502</creationdate><title>Numerical Study of Crystal Size Distribution in Polynuclear Growth</title><author>Sakaguchi, Hidetsugu ; Ohishi, Takuma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-ccda32b9e46cd35d1d0ccc75ce181a1b8451458eb1cd457d3fda9d8815c5032c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Crystal growth</topic><topic>Crystal lattices</topic><topic>Crystals</topic><topic>Dependence</topic><topic>Diffusion rate</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Lattices (mathematics)</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Size distribution</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Sakaguchi, Hidetsugu</creatorcontrib><creatorcontrib>Ohishi, Takuma</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakaguchi, Hidetsugu</au><au>Ohishi, Takuma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study of Crystal Size Distribution in Polynuclear Growth</atitle><jtitle>arXiv.org</jtitle><date>2015-05-02</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>The crystal size distribution in polynuclear growth is numerically studied using a coupled map lattice model. The width of the size distribution depends on c/D, where c is the growth rate at interface sites and \(D\) is the diffusion constant. When c/D is sufficiently small, the width W increases linearly with c/D and saturates at large c/D. Monodisperse square and cubic crystals are obtained respectively on square and cubic lattices when c/D is sufficiently small for a small kinetic parameter b. The linear dependence of W on c/D in a parameter range of small c/D is explained by the eigenfunction for the first eigenvalue in a two-dimensional model and a mean-field model. For the mean-field model, the slope of the linear dependence is evaluated theoretically.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1505.00309</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083055402 |
source | Publicly Available Content (ProQuest) |
subjects | Crystal growth Crystal lattices Crystals Dependence Diffusion rate Eigenvalues Eigenvectors Lattices (mathematics) Mathematical models Parameters Size distribution Two dimensional models |
title | Numerical Study of Crystal Size Distribution in Polynuclear Growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20of%20Crystal%20Size%20Distribution%20in%20Polynuclear%20Growth&rft.jtitle=arXiv.org&rft.au=Sakaguchi,%20Hidetsugu&rft.date=2015-05-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1505.00309&rft_dat=%3Cproquest%3E2083055402%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-ccda32b9e46cd35d1d0ccc75ce181a1b8451458eb1cd457d3fda9d8815c5032c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083055402&rft_id=info:pmid/&rfr_iscdi=true |