Loading…

Data-Driven Prediction of Thresholded Time Series of Rainfall and SOC models

We study the occurrence of events, subject to threshold, in a representative SOC sandpile model and in high-resolution rainfall data. The predictability in both systems is analyzed by means of a decision variable sensitive to event clustering, and the quality of the predictions is evaluated by the r...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-11
Main Authors: Deluca, Anna, Moloney, Nicholas R, Corral, Alvaro
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the occurrence of events, subject to threshold, in a representative SOC sandpile model and in high-resolution rainfall data. The predictability in both systems is analyzed by means of a decision variable sensitive to event clustering, and the quality of the predictions is evaluated by the receiver operating characteristics (ROC) method. In the case of the SOC sandpile model, the scaling of quiet-time distributions with increasing threshold leads to increased predictability of extreme events. A scaling theory allows us to understand all the details of the prediction procedure and to extrapolate the shape of the ROC curves for the most extreme events. For rainfall data, the quiet-time distributions do not scale for high thresholds, which means that the corresponding ROC curves cannot be straightforwardly related to those for lower thresholds.
ISSN:2331-8422
DOI:10.48550/arxiv.1411.2256