Loading…
On a tensor-analogue of the Schur product
We consider the tensorial Schur product \(R \circ^\otimes S = [r_{ij} \otimes s_{ij}]\) for \(R \in M_n(\mathcal{A}), S\in M_n(\mathcal{B}),\) with \(\mathcal{A}, \mathcal{B}\) unital \(C^*\)-algebras, verify that such a `tensorial Schur product' of positive operators is again positive, and the...
Saved in:
Published in: | arXiv.org 2015-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sumesh, K Sunder, V S |
description | We consider the tensorial Schur product \(R \circ^\otimes S = [r_{ij} \otimes s_{ij}]\) for \(R \in M_n(\mathcal{A}), S\in M_n(\mathcal{B}),\) with \(\mathcal{A}, \mathcal{B}\) unital \(C^*\)-algebras, verify that such a `tensorial Schur product' of positive operators is again positive, and then use this fact to prove (an apparently marginally more general version of) the classical result of Choi that a linear map \(\phi:M_n \to M_d\) is completely positive if and only if \([\phi(E_{ij})] \in M_n(M_d)^+\), where of course \(\{E_{ij}:1 \leq i,j \leq n\}\) denotes the usual system of matrix units in \(M_n (:= M_n(\mathbb{C}))\). We also discuss some other corollaries of the main result. |
doi_str_mv | 10.48550/arxiv.1509.04884 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083139583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083139583</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-3eaf760c46c9d84857b4eee19008b100f05b45b9845d823738ed008a33c5e1653</originalsourceid><addsrcrecordid>eNotjstqwzAQRUWh0JDmA7oTdNWF3JFGY4-XJfQFgSyafZDtcR4Eq5Xs0s-voV2dxYVzj1J3FgrPRPAY0s_pu7AEdQGe2V-phUO0hr1zN2qV8xkAXFk5Ilyoh-2ggx5lyDGZMIRLPEyiY6_Ho-iP9jgl_ZliN7XjrbruwyXL6p9LtXt53q3fzGb7-r5-2phADg1K6KsSWl-2dcdzUdV4EbE1ADcWoAdqPDU1e-rYYYUs3TwFxJbEloRLdf-nnW-_Jsnj_hynNIflvQNGizUx4i9d3UDb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083139583</pqid></control><display><type>article</type><title>On a tensor-analogue of the Schur product</title><source>ProQuest - Publicly Available Content Database</source><creator>Sumesh, K ; Sunder, V S</creator><creatorcontrib>Sumesh, K ; Sunder, V S</creatorcontrib><description>We consider the tensorial Schur product \(R \circ^\otimes S = [r_{ij} \otimes s_{ij}]\) for \(R \in M_n(\mathcal{A}), S\in M_n(\mathcal{B}),\) with \(\mathcal{A}, \mathcal{B}\) unital \(C^*\)-algebras, verify that such a `tensorial Schur product' of positive operators is again positive, and then use this fact to prove (an apparently marginally more general version of) the classical result of Choi that a linear map \(\phi:M_n \to M_d\) is completely positive if and only if \([\phi(E_{ij})] \in M_n(M_d)^+\), where of course \(\{E_{ij}:1 \leq i,j \leq n\}\) denotes the usual system of matrix units in \(M_n (:= M_n(\mathbb{C}))\). We also discuss some other corollaries of the main result.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1509.04884</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Tensors</subject><ispartof>arXiv.org, 2015-10</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083139583?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Sumesh, K</creatorcontrib><creatorcontrib>Sunder, V S</creatorcontrib><title>On a tensor-analogue of the Schur product</title><title>arXiv.org</title><description>We consider the tensorial Schur product \(R \circ^\otimes S = [r_{ij} \otimes s_{ij}]\) for \(R \in M_n(\mathcal{A}), S\in M_n(\mathcal{B}),\) with \(\mathcal{A}, \mathcal{B}\) unital \(C^*\)-algebras, verify that such a `tensorial Schur product' of positive operators is again positive, and then use this fact to prove (an apparently marginally more general version of) the classical result of Choi that a linear map \(\phi:M_n \to M_d\) is completely positive if and only if \([\phi(E_{ij})] \in M_n(M_d)^+\), where of course \(\{E_{ij}:1 \leq i,j \leq n\}\) denotes the usual system of matrix units in \(M_n (:= M_n(\mathbb{C}))\). We also discuss some other corollaries of the main result.</description><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAQRUWh0JDmA7oTdNWF3JFGY4-XJfQFgSyafZDtcR4Eq5Xs0s-voV2dxYVzj1J3FgrPRPAY0s_pu7AEdQGe2V-phUO0hr1zN2qV8xkAXFk5Ilyoh-2ggx5lyDGZMIRLPEyiY6_Ho-iP9jgl_ZliN7XjrbruwyXL6p9LtXt53q3fzGb7-r5-2phADg1K6KsSWl-2dcdzUdV4EbE1ADcWoAdqPDU1e-rYYYUs3TwFxJbEloRLdf-nnW-_Jsnj_hynNIflvQNGizUx4i9d3UDb</recordid><startdate>20151014</startdate><enddate>20151014</enddate><creator>Sumesh, K</creator><creator>Sunder, V S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151014</creationdate><title>On a tensor-analogue of the Schur product</title><author>Sumesh, K ; Sunder, V S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-3eaf760c46c9d84857b4eee19008b100f05b45b9845d823738ed008a33c5e1653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Sumesh, K</creatorcontrib><creatorcontrib>Sunder, V S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sumesh, K</au><au>Sunder, V S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a tensor-analogue of the Schur product</atitle><jtitle>arXiv.org</jtitle><date>2015-10-14</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We consider the tensorial Schur product \(R \circ^\otimes S = [r_{ij} \otimes s_{ij}]\) for \(R \in M_n(\mathcal{A}), S\in M_n(\mathcal{B}),\) with \(\mathcal{A}, \mathcal{B}\) unital \(C^*\)-algebras, verify that such a `tensorial Schur product' of positive operators is again positive, and then use this fact to prove (an apparently marginally more general version of) the classical result of Choi that a linear map \(\phi:M_n \to M_d\) is completely positive if and only if \([\phi(E_{ij})] \in M_n(M_d)^+\), where of course \(\{E_{ij}:1 \leq i,j \leq n\}\) denotes the usual system of matrix units in \(M_n (:= M_n(\mathbb{C}))\). We also discuss some other corollaries of the main result.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1509.04884</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083139583 |
source | ProQuest - Publicly Available Content Database |
subjects | Tensors |
title | On a tensor-analogue of the Schur product |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20tensor-analogue%20of%20the%20Schur%20product&rft.jtitle=arXiv.org&rft.au=Sumesh,%20K&rft.date=2015-10-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1509.04884&rft_dat=%3Cproquest%3E2083139583%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-3eaf760c46c9d84857b4eee19008b100f05b45b9845d823738ed008a33c5e1653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083139583&rft_id=info:pmid/&rfr_iscdi=true |