Loading…
Short-Period Waves That Heat the Corona Detected at the 1999 Eclipse
As a part of a study of the cause of solar coronal heating, we searched for high-frequency (~1 Hz) intensity oscillations in coronal loops in the [Fe XIV] coronal green line. We summarize results from observations made at the 11 August 1999 total solar eclipse from Ramnicu-Valcea, Romania, through c...
Saved in:
Published in: | arXiv.org 2002-02 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As a part of a study of the cause of solar coronal heating, we searched for high-frequency (~1 Hz) intensity oscillations in coronal loops in the [Fe XIV] coronal green line. We summarize results from observations made at the 11 August 1999 total solar eclipse from Ramnicu-Valcea, Romania, through clear skies. We discuss the image reduction and analysis through two simultaneous series of coronal CCD images digitized at 10 Hz for a total time of about 140 s. One series of images was taken through a 3.6 A filter isolating the 5303 A [Fe XIV] coronal green line and the other through a 100 A filter in the nearby K-corona continuum. Previous observations, described in Pasachoff et al. (2000), showed no evidence for oscillations in the [Fe XIV] green line at a level great than 2% of coronal intensity. We describe several improvements made over the 1998 eclipse that led to increased image clarity and sensitivity. The corona was brighter in 1999 with the solar maximum, further improving the data. We use Fourier analysis to search in the [Fe XIV] channel for intensity oscillations in loops at the base of the corona. Such oscillations in the 1-Hz range are predicted as a result of density fluctuations from the resonant absorption of MHD waves. The dissipation of a significant amount of mechanical energy from the photosphere into the corona through this mechanism could provide sufficient energy to hear the corona. A Monte-Carlo model of the data suggests the presence of enhanced power, particularly in the 0.75-1.0 Hz range, and we conclude that MHD waves remain a viable method for coronal heating. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0202237 |