Loading…

Dynamics of multi-cored magnetic structures in the quiet Sun

We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by \textsc{Sunrise}. We use high spatial resolution (0\farcs 15--0\farcs 18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together wit...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-08
Main Authors: Requerey, Iker S, Jose Carlos Del Toro Iniesta, Bellot Rubio, Luis R, Valentín Martínez Pillet, Solanki, Sami K, Schmidt, Wolfgang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Requerey, Iker S
Jose Carlos Del Toro Iniesta
Bellot Rubio, Luis R
Valentín Martínez Pillet
Solanki, Sami K
Schmidt, Wolfgang
description We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by \textsc{Sunrise}. We use high spatial resolution (0\farcs 15--0\farcs 18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca\,\textsc{ii}\,H filtergrams from \textsc{Sunrise} Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are "compressed" by surrounding granules and split when they are "squeezed" between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by \citet{2011ApJ...730L..37M} correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes.
doi_str_mv 10.48550/arxiv.1508.06998
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083166853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083166853</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-67e81388a9282240a4b0a7789330f4b5afa345d9b5f7804ad7bbcb1d271dba963</originalsourceid><addsrcrecordid>eNotzctKAzEUgOEgCJbaB3AXcD1j7jkBN1IvFQou7L6czGQ0pTNjcxF9ewVd_bvvJ-SKs1aB1uwG01f8bLlm0DLjHJyRhZCSN6CEuCCrnA-MMWGs0FouyO3994Rj7DKdBzrWY4lNN6fQ0xHfplBiR3NJtSs1hUzjRMt7oKcaQ6Gvdbok5wMec1j9d0l2jw-79abZvjw9r--2DWohG2MDcAmAToAQiqHyDK0FJyUblNc4oFS6d14PFpjC3nrfed4Ly3uPzsgluf5jP9J8qiGX_WGuafo97gUDyY0BLeUP8ipJBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083166853</pqid></control><display><type>article</type><title>Dynamics of multi-cored magnetic structures in the quiet Sun</title><source>Publicly Available Content (ProQuest)</source><creator>Requerey, Iker S ; Jose Carlos Del Toro Iniesta ; Bellot Rubio, Luis R ; Valentín Martínez Pillet ; Solanki, Sami K ; Schmidt, Wolfgang</creator><creatorcontrib>Requerey, Iker S ; Jose Carlos Del Toro Iniesta ; Bellot Rubio, Luis R ; Valentín Martínez Pillet ; Solanki, Sami K ; Schmidt, Wolfgang</creatorcontrib><description>We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by \textsc{Sunrise}. We use high spatial resolution (0\farcs 15--0\farcs 18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca\,\textsc{ii}\,H filtergrams from \textsc{Sunrise} Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are "compressed" by surrounding granules and split when they are "squeezed" between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by \citet{2011ApJ...730L..37M} correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1508.06998</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coalescing ; Convection ; Filtergrams ; Fragmentation ; Granular materials ; Magnetic fields ; Magnetic flux ; Oscillations ; Paths ; Photometry ; Photosphere ; Polarimetry ; Solar magnetic field ; Spatial resolution ; Sunrise ; Tubes</subject><ispartof>arXiv.org, 2015-08</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083166853?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Requerey, Iker S</creatorcontrib><creatorcontrib>Jose Carlos Del Toro Iniesta</creatorcontrib><creatorcontrib>Bellot Rubio, Luis R</creatorcontrib><creatorcontrib>Valentín Martínez Pillet</creatorcontrib><creatorcontrib>Solanki, Sami K</creatorcontrib><creatorcontrib>Schmidt, Wolfgang</creatorcontrib><title>Dynamics of multi-cored magnetic structures in the quiet Sun</title><title>arXiv.org</title><description>We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by \textsc{Sunrise}. We use high spatial resolution (0\farcs 15--0\farcs 18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca\,\textsc{ii}\,H filtergrams from \textsc{Sunrise} Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are "compressed" by surrounding granules and split when they are "squeezed" between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by \citet{2011ApJ...730L..37M} correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes.</description><subject>Coalescing</subject><subject>Convection</subject><subject>Filtergrams</subject><subject>Fragmentation</subject><subject>Granular materials</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Oscillations</subject><subject>Paths</subject><subject>Photometry</subject><subject>Photosphere</subject><subject>Polarimetry</subject><subject>Solar magnetic field</subject><subject>Spatial resolution</subject><subject>Sunrise</subject><subject>Tubes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzctKAzEUgOEgCJbaB3AXcD1j7jkBN1IvFQou7L6czGQ0pTNjcxF9ewVd_bvvJ-SKs1aB1uwG01f8bLlm0DLjHJyRhZCSN6CEuCCrnA-MMWGs0FouyO3994Rj7DKdBzrWY4lNN6fQ0xHfplBiR3NJtSs1hUzjRMt7oKcaQ6Gvdbok5wMec1j9d0l2jw-79abZvjw9r--2DWohG2MDcAmAToAQiqHyDK0FJyUblNc4oFS6d14PFpjC3nrfed4Ly3uPzsgluf5jP9J8qiGX_WGuafo97gUDyY0BLeUP8ipJBQ</recordid><startdate>20150827</startdate><enddate>20150827</enddate><creator>Requerey, Iker S</creator><creator>Jose Carlos Del Toro Iniesta</creator><creator>Bellot Rubio, Luis R</creator><creator>Valentín Martínez Pillet</creator><creator>Solanki, Sami K</creator><creator>Schmidt, Wolfgang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150827</creationdate><title>Dynamics of multi-cored magnetic structures in the quiet Sun</title><author>Requerey, Iker S ; Jose Carlos Del Toro Iniesta ; Bellot Rubio, Luis R ; Valentín Martínez Pillet ; Solanki, Sami K ; Schmidt, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-67e81388a9282240a4b0a7789330f4b5afa345d9b5f7804ad7bbcb1d271dba963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coalescing</topic><topic>Convection</topic><topic>Filtergrams</topic><topic>Fragmentation</topic><topic>Granular materials</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Oscillations</topic><topic>Paths</topic><topic>Photometry</topic><topic>Photosphere</topic><topic>Polarimetry</topic><topic>Solar magnetic field</topic><topic>Spatial resolution</topic><topic>Sunrise</topic><topic>Tubes</topic><toplevel>online_resources</toplevel><creatorcontrib>Requerey, Iker S</creatorcontrib><creatorcontrib>Jose Carlos Del Toro Iniesta</creatorcontrib><creatorcontrib>Bellot Rubio, Luis R</creatorcontrib><creatorcontrib>Valentín Martínez Pillet</creatorcontrib><creatorcontrib>Solanki, Sami K</creatorcontrib><creatorcontrib>Schmidt, Wolfgang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Requerey, Iker S</au><au>Jose Carlos Del Toro Iniesta</au><au>Bellot Rubio, Luis R</au><au>Valentín Martínez Pillet</au><au>Solanki, Sami K</au><au>Schmidt, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of multi-cored magnetic structures in the quiet Sun</atitle><jtitle>arXiv.org</jtitle><date>2015-08-27</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by \textsc{Sunrise}. We use high spatial resolution (0\farcs 15--0\farcs 18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca\,\textsc{ii}\,H filtergrams from \textsc{Sunrise} Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are "compressed" by surrounding granules and split when they are "squeezed" between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by \citet{2011ApJ...730L..37M} correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1508.06998</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083166853
source Publicly Available Content (ProQuest)
subjects Coalescing
Convection
Filtergrams
Fragmentation
Granular materials
Magnetic fields
Magnetic flux
Oscillations
Paths
Photometry
Photosphere
Polarimetry
Solar magnetic field
Spatial resolution
Sunrise
Tubes
title Dynamics of multi-cored magnetic structures in the quiet Sun
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20multi-cored%20magnetic%20structures%20in%20the%20quiet%20Sun&rft.jtitle=arXiv.org&rft.au=Requerey,%20Iker%20S&rft.date=2015-08-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1508.06998&rft_dat=%3Cproquest%3E2083166853%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-67e81388a9282240a4b0a7789330f4b5afa345d9b5f7804ad7bbcb1d271dba963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083166853&rft_id=info:pmid/&rfr_iscdi=true