Loading…

Thermodynamics of site-specific small molecular ion interactions with DNA duplex: a molecular dynamics study

The stability and dynamics of a double-stranded DNA (dsDNA) is affected by the preferential occupancy of small monovalent molecular ions. Small metal and molecular ions such as sodium and alkyl ammonium have crucial biological functions in human body, affect the thermodynamic stability of the duplex...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-08
Main Authors: Ghosh, Soumadwip, Dixit, Mayank Kumar, Chakrabarti, Rajarshi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ghosh, Soumadwip
Dixit, Mayank Kumar
Chakrabarti, Rajarshi
description The stability and dynamics of a double-stranded DNA (dsDNA) is affected by the preferential occupancy of small monovalent molecular ions. Small metal and molecular ions such as sodium and alkyl ammonium have crucial biological functions in human body, affect the thermodynamic stability of the duplex DNA and exhibit preferential binding. Here, using atomistic molecular dynamics simulations we investigate the preferential binding of metal ion such as Na+ and molecular ions such as tetramethyl ammonium (TMA+) and 2-hydroxy-N,N,N-trimethylethanaminium (CHO+) to double stranded DNA. The thermodynamic driving force for a particular molecular ion- DNA interaction is determined by decomposing the free energy of binding into its entropic and enthalpic contributions. Our simulations show that each of these molecular ions preferentially binds to the minor groove of the DNA and the extent of binding is highest for CHO+. The ion binding processes are found to be entropically favourable. In addition, the contribution of hydrophobic effects towards the entropic stabilization (in case of TMA+) and the effect of hydrogen bonding contributing to enthalpic stabilization (in case of CHO+) have also been investigated.
doi_str_mv 10.48550/arxiv.1508.05236
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083185442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083185442</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-8c1a0ce2db374f851ccfdb5c180faf662dd78e334bd4ebf1e0e843f81837e7173</originalsourceid><addsrcrecordid>eNpNjctKAzEYRoMgWGofwF3A9Yy5ToK7Uq9QdDP7kkn-0JTMZJxktH17C4q4-s7icD6EbiiphZaS3JnpGD5rKomuiWS8uUALxjmttGDsCq1yPhBCWKOYlHyBYruHqU_uNJg-2IyTxzkUqPIINvhgce5NjLhPEewczYRDGnAYCkzGljNn_BXKHj-8rbGbxwjHe2z-2X_dXGZ3ukaX3sQMq99dovbpsd28VNv359fNelsZyVilLTXEAnMdV8JrSa31rpOWauKNbxrmnNLAueicgM5TIKAF95pqrkBRxZfo9ic7Tuljhlx2hzRPw_lxx4jmVEshGP8GrCJcLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083185442</pqid></control><display><type>article</type><title>Thermodynamics of site-specific small molecular ion interactions with DNA duplex: a molecular dynamics study</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ghosh, Soumadwip ; Dixit, Mayank Kumar ; Chakrabarti, Rajarshi</creator><creatorcontrib>Ghosh, Soumadwip ; Dixit, Mayank Kumar ; Chakrabarti, Rajarshi</creatorcontrib><description>The stability and dynamics of a double-stranded DNA (dsDNA) is affected by the preferential occupancy of small monovalent molecular ions. Small metal and molecular ions such as sodium and alkyl ammonium have crucial biological functions in human body, affect the thermodynamic stability of the duplex DNA and exhibit preferential binding. Here, using atomistic molecular dynamics simulations we investigate the preferential binding of metal ion such as Na+ and molecular ions such as tetramethyl ammonium (TMA+) and 2-hydroxy-N,N,N-trimethylethanaminium (CHO+) to double stranded DNA. The thermodynamic driving force for a particular molecular ion- DNA interaction is determined by decomposing the free energy of binding into its entropic and enthalpic contributions. Our simulations show that each of these molecular ions preferentially binds to the minor groove of the DNA and the extent of binding is highest for CHO+. The ion binding processes are found to be entropically favourable. In addition, the contribution of hydrophobic effects towards the entropic stabilization (in case of TMA+) and the effect of hydrogen bonding contributing to enthalpic stabilization (in case of CHO+) have also been investigated.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1508.05236</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Binding ; Deoxyribonucleic acid ; DNA ; Dynamic stability ; Free energy ; Hydrogen bonding ; Ions ; Molecular dynamics ; Molecular ions ; Occupancy ; Sodium</subject><ispartof>arXiv.org, 2015-08</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083185442?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ghosh, Soumadwip</creatorcontrib><creatorcontrib>Dixit, Mayank Kumar</creatorcontrib><creatorcontrib>Chakrabarti, Rajarshi</creatorcontrib><title>Thermodynamics of site-specific small molecular ion interactions with DNA duplex: a molecular dynamics study</title><title>arXiv.org</title><description>The stability and dynamics of a double-stranded DNA (dsDNA) is affected by the preferential occupancy of small monovalent molecular ions. Small metal and molecular ions such as sodium and alkyl ammonium have crucial biological functions in human body, affect the thermodynamic stability of the duplex DNA and exhibit preferential binding. Here, using atomistic molecular dynamics simulations we investigate the preferential binding of metal ion such as Na+ and molecular ions such as tetramethyl ammonium (TMA+) and 2-hydroxy-N,N,N-trimethylethanaminium (CHO+) to double stranded DNA. The thermodynamic driving force for a particular molecular ion- DNA interaction is determined by decomposing the free energy of binding into its entropic and enthalpic contributions. Our simulations show that each of these molecular ions preferentially binds to the minor groove of the DNA and the extent of binding is highest for CHO+. The ion binding processes are found to be entropically favourable. In addition, the contribution of hydrophobic effects towards the entropic stabilization (in case of TMA+) and the effect of hydrogen bonding contributing to enthalpic stabilization (in case of CHO+) have also been investigated.</description><subject>Binding</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dynamic stability</subject><subject>Free energy</subject><subject>Hydrogen bonding</subject><subject>Ions</subject><subject>Molecular dynamics</subject><subject>Molecular ions</subject><subject>Occupancy</subject><subject>Sodium</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNjctKAzEYRoMgWGofwF3A9Yy5ToK7Uq9QdDP7kkn-0JTMZJxktH17C4q4-s7icD6EbiiphZaS3JnpGD5rKomuiWS8uUALxjmttGDsCq1yPhBCWKOYlHyBYruHqU_uNJg-2IyTxzkUqPIINvhgce5NjLhPEewczYRDGnAYCkzGljNn_BXKHj-8rbGbxwjHe2z-2X_dXGZ3ukaX3sQMq99dovbpsd28VNv359fNelsZyVilLTXEAnMdV8JrSa31rpOWauKNbxrmnNLAueicgM5TIKAF95pqrkBRxZfo9ic7Tuljhlx2hzRPw_lxx4jmVEshGP8GrCJcLA</recordid><startdate>20150821</startdate><enddate>20150821</enddate><creator>Ghosh, Soumadwip</creator><creator>Dixit, Mayank Kumar</creator><creator>Chakrabarti, Rajarshi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150821</creationdate><title>Thermodynamics of site-specific small molecular ion interactions with DNA duplex: a molecular dynamics study</title><author>Ghosh, Soumadwip ; Dixit, Mayank Kumar ; Chakrabarti, Rajarshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-8c1a0ce2db374f851ccfdb5c180faf662dd78e334bd4ebf1e0e843f81837e7173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binding</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dynamic stability</topic><topic>Free energy</topic><topic>Hydrogen bonding</topic><topic>Ions</topic><topic>Molecular dynamics</topic><topic>Molecular ions</topic><topic>Occupancy</topic><topic>Sodium</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Soumadwip</creatorcontrib><creatorcontrib>Dixit, Mayank Kumar</creatorcontrib><creatorcontrib>Chakrabarti, Rajarshi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Soumadwip</au><au>Dixit, Mayank Kumar</au><au>Chakrabarti, Rajarshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of site-specific small molecular ion interactions with DNA duplex: a molecular dynamics study</atitle><jtitle>arXiv.org</jtitle><date>2015-08-21</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>The stability and dynamics of a double-stranded DNA (dsDNA) is affected by the preferential occupancy of small monovalent molecular ions. Small metal and molecular ions such as sodium and alkyl ammonium have crucial biological functions in human body, affect the thermodynamic stability of the duplex DNA and exhibit preferential binding. Here, using atomistic molecular dynamics simulations we investigate the preferential binding of metal ion such as Na+ and molecular ions such as tetramethyl ammonium (TMA+) and 2-hydroxy-N,N,N-trimethylethanaminium (CHO+) to double stranded DNA. The thermodynamic driving force for a particular molecular ion- DNA interaction is determined by decomposing the free energy of binding into its entropic and enthalpic contributions. Our simulations show that each of these molecular ions preferentially binds to the minor groove of the DNA and the extent of binding is highest for CHO+. The ion binding processes are found to be entropically favourable. In addition, the contribution of hydrophobic effects towards the entropic stabilization (in case of TMA+) and the effect of hydrogen bonding contributing to enthalpic stabilization (in case of CHO+) have also been investigated.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1508.05236</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083185442
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Binding
Deoxyribonucleic acid
DNA
Dynamic stability
Free energy
Hydrogen bonding
Ions
Molecular dynamics
Molecular ions
Occupancy
Sodium
title Thermodynamics of site-specific small molecular ion interactions with DNA duplex: a molecular dynamics study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20site-specific%20small%20molecular%20ion%20interactions%20with%20DNA%20duplex:%20a%20molecular%20dynamics%20study&rft.jtitle=arXiv.org&rft.au=Ghosh,%20Soumadwip&rft.date=2015-08-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1508.05236&rft_dat=%3Cproquest%3E2083185442%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-8c1a0ce2db374f851ccfdb5c180faf662dd78e334bd4ebf1e0e843f81837e7173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083185442&rft_id=info:pmid/&rfr_iscdi=true