Loading…

Submanifolds with nonpositive extrinsic curvature

We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-07
Main Authors: Canevari, Samuel, Guilherme Machado de Freitas, Manfio, Fernando
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Canevari, Samuel
Guilherme Machado de Freitas
Manfio, Fernando
description We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller the radius is, the larger such curvatures are. This work unifies and generalizes several previous results on submanifolds with nonpositive extrinsic curvature.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083213781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083213781</sourcerecordid><originalsourceid>FETCH-proquest_journals_20832137813</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScC8lda7OL4q57qTXFKzWpuaT6-Dr4AE7_8P0LkQGiLkwJsBI586CUgl0NVYWZ0Od0fbSOej_eWL4o3qXzbvJMkWYr7TsGckyd7FKY25iC3Yhl345s81_XYns8XPanYgr-mSzHZvApuC81oAyCxtpo_O_6ACkMNJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083213781</pqid></control><display><type>article</type><title>Submanifolds with nonpositive extrinsic curvature</title><source>Publicly Available Content (ProQuest)</source><creator>Canevari, Samuel ; Guilherme Machado de Freitas ; Manfio, Fernando</creator><creatorcontrib>Canevari, Samuel ; Guilherme Machado de Freitas ; Manfio, Fernando</creatorcontrib><description>We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller the radius is, the larger such curvatures are. This work unifies and generalizes several previous results on submanifolds with nonpositive extrinsic curvature.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curvature ; Cylinders ; Manifolds (mathematics) ; Maximum principle</subject><ispartof>arXiv.org, 2015-07</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083213781?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Canevari, Samuel</creatorcontrib><creatorcontrib>Guilherme Machado de Freitas</creatorcontrib><creatorcontrib>Manfio, Fernando</creatorcontrib><title>Submanifolds with nonpositive extrinsic curvature</title><title>arXiv.org</title><description>We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller the radius is, the larger such curvatures are. This work unifies and generalizes several previous results on submanifolds with nonpositive extrinsic curvature.</description><subject>Curvature</subject><subject>Cylinders</subject><subject>Manifolds (mathematics)</subject><subject>Maximum principle</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScC8lda7OL4q57qTXFKzWpuaT6-Dr4AE7_8P0LkQGiLkwJsBI586CUgl0NVYWZ0Od0fbSOej_eWL4o3qXzbvJMkWYr7TsGckyd7FKY25iC3Yhl345s81_XYns8XPanYgr-mSzHZvApuC81oAyCxtpo_O_6ACkMNJc</recordid><startdate>20150709</startdate><enddate>20150709</enddate><creator>Canevari, Samuel</creator><creator>Guilherme Machado de Freitas</creator><creator>Manfio, Fernando</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150709</creationdate><title>Submanifolds with nonpositive extrinsic curvature</title><author>Canevari, Samuel ; Guilherme Machado de Freitas ; Manfio, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20832137813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Curvature</topic><topic>Cylinders</topic><topic>Manifolds (mathematics)</topic><topic>Maximum principle</topic><toplevel>online_resources</toplevel><creatorcontrib>Canevari, Samuel</creatorcontrib><creatorcontrib>Guilherme Machado de Freitas</creatorcontrib><creatorcontrib>Manfio, Fernando</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canevari, Samuel</au><au>Guilherme Machado de Freitas</au><au>Manfio, Fernando</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Submanifolds with nonpositive extrinsic curvature</atitle><jtitle>arXiv.org</jtitle><date>2015-07-09</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller the radius is, the larger such curvatures are. This work unifies and generalizes several previous results on submanifolds with nonpositive extrinsic curvature.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083213781
source Publicly Available Content (ProQuest)
subjects Curvature
Cylinders
Manifolds (mathematics)
Maximum principle
title Submanifolds with nonpositive extrinsic curvature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Submanifolds%20with%20nonpositive%20extrinsic%20curvature&rft.jtitle=arXiv.org&rft.au=Canevari,%20Samuel&rft.date=2015-07-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083213781%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20832137813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083213781&rft_id=info:pmid/&rfr_iscdi=true