Loading…
Submanifolds with nonpositive extrinsic curvature
We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller t...
Saved in:
Published in: | arXiv.org 2015-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Canevari, Samuel Guilherme Machado de Freitas Manfio, Fernando |
description | We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller the radius is, the larger such curvatures are. This work unifies and generalizes several previous results on submanifolds with nonpositive extrinsic curvature. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083213781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083213781</sourcerecordid><originalsourceid>FETCH-proquest_journals_20832137813</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScC8lda7OL4q57qTXFKzWpuaT6-Dr4AE7_8P0LkQGiLkwJsBI586CUgl0NVYWZ0Od0fbSOej_eWL4o3qXzbvJMkWYr7TsGckyd7FKY25iC3Yhl345s81_XYns8XPanYgr-mSzHZvApuC81oAyCxtpo_O_6ACkMNJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083213781</pqid></control><display><type>article</type><title>Submanifolds with nonpositive extrinsic curvature</title><source>Publicly Available Content (ProQuest)</source><creator>Canevari, Samuel ; Guilherme Machado de Freitas ; Manfio, Fernando</creator><creatorcontrib>Canevari, Samuel ; Guilherme Machado de Freitas ; Manfio, Fernando</creatorcontrib><description>We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller the radius is, the larger such curvatures are. This work unifies and generalizes several previous results on submanifolds with nonpositive extrinsic curvature.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curvature ; Cylinders ; Manifolds (mathematics) ; Maximum principle</subject><ispartof>arXiv.org, 2015-07</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083213781?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Canevari, Samuel</creatorcontrib><creatorcontrib>Guilherme Machado de Freitas</creatorcontrib><creatorcontrib>Manfio, Fernando</creatorcontrib><title>Submanifolds with nonpositive extrinsic curvature</title><title>arXiv.org</title><description>We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller the radius is, the larger such curvatures are. This work unifies and generalizes several previous results on submanifolds with nonpositive extrinsic curvature.</description><subject>Curvature</subject><subject>Cylinders</subject><subject>Manifolds (mathematics)</subject><subject>Maximum principle</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScC8lda7OL4q57qTXFKzWpuaT6-Dr4AE7_8P0LkQGiLkwJsBI586CUgl0NVYWZ0Od0fbSOej_eWL4o3qXzbvJMkWYr7TsGckyd7FKY25iC3Yhl345s81_XYns8XPanYgr-mSzHZvApuC81oAyCxtpo_O_6ACkMNJc</recordid><startdate>20150709</startdate><enddate>20150709</enddate><creator>Canevari, Samuel</creator><creator>Guilherme Machado de Freitas</creator><creator>Manfio, Fernando</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150709</creationdate><title>Submanifolds with nonpositive extrinsic curvature</title><author>Canevari, Samuel ; Guilherme Machado de Freitas ; Manfio, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20832137813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Curvature</topic><topic>Cylinders</topic><topic>Manifolds (mathematics)</topic><topic>Maximum principle</topic><toplevel>online_resources</toplevel><creatorcontrib>Canevari, Samuel</creatorcontrib><creatorcontrib>Guilherme Machado de Freitas</creatorcontrib><creatorcontrib>Manfio, Fernando</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canevari, Samuel</au><au>Guilherme Machado de Freitas</au><au>Manfio, Fernando</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Submanifolds with nonpositive extrinsic curvature</atitle><jtitle>arXiv.org</jtitle><date>2015-07-09</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller the radius is, the larger such curvatures are. This work unifies and generalizes several previous results on submanifolds with nonpositive extrinsic curvature.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083213781 |
source | Publicly Available Content (ProQuest) |
subjects | Curvature Cylinders Manifolds (mathematics) Maximum principle |
title | Submanifolds with nonpositive extrinsic curvature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Submanifolds%20with%20nonpositive%20extrinsic%20curvature&rft.jtitle=arXiv.org&rft.au=Canevari,%20Samuel&rft.date=2015-07-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083213781%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20832137813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083213781&rft_id=info:pmid/&rfr_iscdi=true |