Loading…
Nonlinear stochastic receding horizon control: stability, robustness and Monte Carlo methods for control approximation
This work considers the stability of nonlinear stochastic receding horizon control when the optimal controller is only computed approximately. A number of general classes of controller approximation error are analysed including deterministic and probabilistic errors and even controller sample and ho...
Saved in:
Published in: | arXiv.org 2018-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bertoli, Francesco Bishop, Adrian N |
description | This work considers the stability of nonlinear stochastic receding horizon control when the optimal controller is only computed approximately. A number of general classes of controller approximation error are analysed including deterministic and probabilistic errors and even controller sample and hold errors. In each case, it is shown that the controller approximation errors do not accumulate (even over an infinite time frame) and the process converges exponentially fast to a small neighbourhood of the origin. In addition to this analysis, an approximation method for receding horizon optimal control is proposed based on Monte Carlo simulation. This method is derived via the Feynman-Kac formula which gives a stochastic interpretation for the solution of a Hamilton-Jacobi-Bellman equation associated with the true optimal controller. It is shown, and it is a prime motivation for this study, that this particular controller approximation method practically stabilises the underlying nonlinear process. |
doi_str_mv | 10.48550/arxiv.1507.02780 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083251379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083251379</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-95a048a87aa6e7bd6c722eed04ba39ee006abd5d017819aa58242c346fa81f073</originalsourceid><addsrcrecordid>eNo1jb1OwzAURi0kJKrSB2CzxErCtR3HDhuK-JMKLN2rm9ihrlK72G5VeHoiAdO3nO8cQq4YlJWWEm4xntyxZBJUCVxpOCMzLgQrdMX5BVmktAUAXisupZiR41vwo_MWI0059BtM2fU02t4a5z_oJkT3HTztg88xjHcThJ0bXf66oTF0h5S9TYmiN_R1QixtMY6B7mzeBJPoEOL_leJ-H8PJ7TC74C_J-YBjsou_nZPV48OqfS6W708v7f2yQMmbopEIlUatEGurOlP3inNrDVQdisZagBo7Iw0wpVmDKDWveC-qekDNBlBiTq5_tVP682BTXm_DIfqpuOagBZdMqEb8AFPbYDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083251379</pqid></control><display><type>article</type><title>Nonlinear stochastic receding horizon control: stability, robustness and Monte Carlo methods for control approximation</title><source>Publicly Available Content (ProQuest)</source><creator>Bertoli, Francesco ; Bishop, Adrian N</creator><creatorcontrib>Bertoli, Francesco ; Bishop, Adrian N</creatorcontrib><description>This work considers the stability of nonlinear stochastic receding horizon control when the optimal controller is only computed approximately. A number of general classes of controller approximation error are analysed including deterministic and probabilistic errors and even controller sample and hold errors. In each case, it is shown that the controller approximation errors do not accumulate (even over an infinite time frame) and the process converges exponentially fast to a small neighbourhood of the origin. In addition to this analysis, an approximation method for receding horizon optimal control is proposed based on Monte Carlo simulation. This method is derived via the Feynman-Kac formula which gives a stochastic interpretation for the solution of a Hamilton-Jacobi-Bellman equation associated with the true optimal controller. It is shown, and it is a prime motivation for this study, that this particular controller approximation method practically stabilises the underlying nonlinear process.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1507.02780</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Control stability ; Controllers ; Error analysis ; Mathematical analysis ; Monte Carlo simulation ; Optimal control ; Receding horizon principle ; Robust control</subject><ispartof>arXiv.org, 2018-11</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083251379?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Bertoli, Francesco</creatorcontrib><creatorcontrib>Bishop, Adrian N</creatorcontrib><title>Nonlinear stochastic receding horizon control: stability, robustness and Monte Carlo methods for control approximation</title><title>arXiv.org</title><description>This work considers the stability of nonlinear stochastic receding horizon control when the optimal controller is only computed approximately. A number of general classes of controller approximation error are analysed including deterministic and probabilistic errors and even controller sample and hold errors. In each case, it is shown that the controller approximation errors do not accumulate (even over an infinite time frame) and the process converges exponentially fast to a small neighbourhood of the origin. In addition to this analysis, an approximation method for receding horizon optimal control is proposed based on Monte Carlo simulation. This method is derived via the Feynman-Kac formula which gives a stochastic interpretation for the solution of a Hamilton-Jacobi-Bellman equation associated with the true optimal controller. It is shown, and it is a prime motivation for this study, that this particular controller approximation method practically stabilises the underlying nonlinear process.</description><subject>Approximation</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Error analysis</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Optimal control</subject><subject>Receding horizon principle</subject><subject>Robust control</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo1jb1OwzAURi0kJKrSB2CzxErCtR3HDhuK-JMKLN2rm9ihrlK72G5VeHoiAdO3nO8cQq4YlJWWEm4xntyxZBJUCVxpOCMzLgQrdMX5BVmktAUAXisupZiR41vwo_MWI0059BtM2fU02t4a5z_oJkT3HTztg88xjHcThJ0bXf66oTF0h5S9TYmiN_R1QixtMY6B7mzeBJPoEOL_leJ-H8PJ7TC74C_J-YBjsou_nZPV48OqfS6W708v7f2yQMmbopEIlUatEGurOlP3inNrDVQdisZagBo7Iw0wpVmDKDWveC-qekDNBlBiTq5_tVP682BTXm_DIfqpuOagBZdMqEb8AFPbYDs</recordid><startdate>20181130</startdate><enddate>20181130</enddate><creator>Bertoli, Francesco</creator><creator>Bishop, Adrian N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20181130</creationdate><title>Nonlinear stochastic receding horizon control: stability, robustness and Monte Carlo methods for control approximation</title><author>Bertoli, Francesco ; Bishop, Adrian N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-95a048a87aa6e7bd6c722eed04ba39ee006abd5d017819aa58242c346fa81f073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Error analysis</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Optimal control</topic><topic>Receding horizon principle</topic><topic>Robust control</topic><toplevel>online_resources</toplevel><creatorcontrib>Bertoli, Francesco</creatorcontrib><creatorcontrib>Bishop, Adrian N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertoli, Francesco</au><au>Bishop, Adrian N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear stochastic receding horizon control: stability, robustness and Monte Carlo methods for control approximation</atitle><jtitle>arXiv.org</jtitle><date>2018-11-30</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>This work considers the stability of nonlinear stochastic receding horizon control when the optimal controller is only computed approximately. A number of general classes of controller approximation error are analysed including deterministic and probabilistic errors and even controller sample and hold errors. In each case, it is shown that the controller approximation errors do not accumulate (even over an infinite time frame) and the process converges exponentially fast to a small neighbourhood of the origin. In addition to this analysis, an approximation method for receding horizon optimal control is proposed based on Monte Carlo simulation. This method is derived via the Feynman-Kac formula which gives a stochastic interpretation for the solution of a Hamilton-Jacobi-Bellman equation associated with the true optimal controller. It is shown, and it is a prime motivation for this study, that this particular controller approximation method practically stabilises the underlying nonlinear process.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1507.02780</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083251379 |
source | Publicly Available Content (ProQuest) |
subjects | Approximation Control stability Controllers Error analysis Mathematical analysis Monte Carlo simulation Optimal control Receding horizon principle Robust control |
title | Nonlinear stochastic receding horizon control: stability, robustness and Monte Carlo methods for control approximation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20stochastic%20receding%20horizon%20control:%20stability,%20robustness%20and%20Monte%20Carlo%20methods%20for%20control%20approximation&rft.jtitle=arXiv.org&rft.au=Bertoli,%20Francesco&rft.date=2018-11-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1507.02780&rft_dat=%3Cproquest%3E2083251379%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-95a048a87aa6e7bd6c722eed04ba39ee006abd5d017819aa58242c346fa81f073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083251379&rft_id=info:pmid/&rfr_iscdi=true |