Loading…
Single-periodic-film optical bandpass filter
Resonant periodic surfaces and films enable new functionalities with wide applicability in practical optical systems. Their material sparsity, ease of fabrication, and minimal interface count provide environmental and thermal stability and robustness in applications. Here we report an experimental b...
Saved in:
Published in: | arXiv.org 2015-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Niraula, Manoj Yoon, Jae Woong Magnusson, Robert |
description | Resonant periodic surfaces and films enable new functionalities with wide applicability in practical optical systems. Their material sparsity, ease of fabrication, and minimal interface count provide environmental and thermal stability and robustness in applications. Here we report an experimental bandpass filter fashioned in a single patterned layer on a substrate. Its performance corresponds to bandpass filters requiring perhaps 30 traditional thin-film layers as shown by an example. We demonstrate an ultra-narrow, high-efficiency bandpass filter with extremely wide, flat, and low sidebands. This class of devices is designed with rigorous solutions of the Maxwell equations while engaging the physical principles of resonant waveguide gratings. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083377268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083377268</sourcerecordid><originalsourceid>FETCH-proquest_journals_20833772683</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCc7MS89J1S1ILcrMT8lM1k3LzMlVyC8oyUxOzFFISsxLKUgsLlYAipakFvEwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgYWxsbm5kZmFMXGqAJ8BMd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083377268</pqid></control><display><type>article</type><title>Single-periodic-film optical bandpass filter</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Niraula, Manoj ; Yoon, Jae Woong ; Magnusson, Robert</creator><creatorcontrib>Niraula, Manoj ; Yoon, Jae Woong ; Magnusson, Robert</creatorcontrib><description>Resonant periodic surfaces and films enable new functionalities with wide applicability in practical optical systems. Their material sparsity, ease of fabrication, and minimal interface count provide environmental and thermal stability and robustness in applications. Here we report an experimental bandpass filter fashioned in a single patterned layer on a substrate. Its performance corresponds to bandpass filters requiring perhaps 30 traditional thin-film layers as shown by an example. We demonstrate an ultra-narrow, high-efficiency bandpass filter with extremely wide, flat, and low sidebands. This class of devices is designed with rigorous solutions of the Maxwell equations while engaging the physical principles of resonant waveguide gratings. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bandpass filters ; Gratings (spectra) ; Interface stability ; Maxwell's equations ; Sidebands ; Substrates ; Thermal stability ; Thin films ; Ultrawideband</subject><ispartof>arXiv.org, 2015-09</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083377268?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Niraula, Manoj</creatorcontrib><creatorcontrib>Yoon, Jae Woong</creatorcontrib><creatorcontrib>Magnusson, Robert</creatorcontrib><title>Single-periodic-film optical bandpass filter</title><title>arXiv.org</title><description>Resonant periodic surfaces and films enable new functionalities with wide applicability in practical optical systems. Their material sparsity, ease of fabrication, and minimal interface count provide environmental and thermal stability and robustness in applications. Here we report an experimental bandpass filter fashioned in a single patterned layer on a substrate. Its performance corresponds to bandpass filters requiring perhaps 30 traditional thin-film layers as shown by an example. We demonstrate an ultra-narrow, high-efficiency bandpass filter with extremely wide, flat, and low sidebands. This class of devices is designed with rigorous solutions of the Maxwell equations while engaging the physical principles of resonant waveguide gratings. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied.</description><subject>Bandpass filters</subject><subject>Gratings (spectra)</subject><subject>Interface stability</subject><subject>Maxwell's equations</subject><subject>Sidebands</subject><subject>Substrates</subject><subject>Thermal stability</subject><subject>Thin films</subject><subject>Ultrawideband</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCc7MS89J1S1ILcrMT8lM1k3LzMlVyC8oyUxOzFFISsxLKUgsLlYAipakFvEwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgYWxsbm5kZmFMXGqAJ8BMd4</recordid><startdate>20150909</startdate><enddate>20150909</enddate><creator>Niraula, Manoj</creator><creator>Yoon, Jae Woong</creator><creator>Magnusson, Robert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150909</creationdate><title>Single-periodic-film optical bandpass filter</title><author>Niraula, Manoj ; Yoon, Jae Woong ; Magnusson, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20833772683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bandpass filters</topic><topic>Gratings (spectra)</topic><topic>Interface stability</topic><topic>Maxwell's equations</topic><topic>Sidebands</topic><topic>Substrates</topic><topic>Thermal stability</topic><topic>Thin films</topic><topic>Ultrawideband</topic><toplevel>online_resources</toplevel><creatorcontrib>Niraula, Manoj</creatorcontrib><creatorcontrib>Yoon, Jae Woong</creatorcontrib><creatorcontrib>Magnusson, Robert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niraula, Manoj</au><au>Yoon, Jae Woong</au><au>Magnusson, Robert</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Single-periodic-film optical bandpass filter</atitle><jtitle>arXiv.org</jtitle><date>2015-09-09</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Resonant periodic surfaces and films enable new functionalities with wide applicability in practical optical systems. Their material sparsity, ease of fabrication, and minimal interface count provide environmental and thermal stability and robustness in applications. Here we report an experimental bandpass filter fashioned in a single patterned layer on a substrate. Its performance corresponds to bandpass filters requiring perhaps 30 traditional thin-film layers as shown by an example. We demonstrate an ultra-narrow, high-efficiency bandpass filter with extremely wide, flat, and low sidebands. This class of devices is designed with rigorous solutions of the Maxwell equations while engaging the physical principles of resonant waveguide gratings. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083377268 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Bandpass filters Gratings (spectra) Interface stability Maxwell's equations Sidebands Substrates Thermal stability Thin films Ultrawideband |
title | Single-periodic-film optical bandpass filter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Single-periodic-film%20optical%20bandpass%20filter&rft.jtitle=arXiv.org&rft.au=Niraula,%20Manoj&rft.date=2015-09-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083377268%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20833772683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083377268&rft_id=info:pmid/&rfr_iscdi=true |