Loading…
Information Geometry and the Renormalization Group
Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality, for both classi...
Saved in:
Published in: | arXiv.org 2015-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Maity, Reevu Mahapatra, Subhash Sarkar, Tapobrata |
description | Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality, for both classical and quantum systems, in an universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective. |
doi_str_mv | 10.48550/arxiv.1503.03978 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083393072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083393072</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-288054b0465594c6bdd39d15c7277959460780fd9b1675db1a1c0814ce9ec68a3</originalsourceid><addsrcrecordid>eNotjU1Lw0AURQdBsNT-AHcB14lv3ps3H0spWgsFQbovk8wEU9pMnSSi_nordnXhnsu5QtxJqJRlhgefv7rPSjJQBeSMvRIzJJKlVYg3YjEMewBAbZCZZgLXfZvy0Y9d6otVTMc45u_C96EY32PxFvs_eOh-LoOcptOtuG79YYiLS87F9vlpu3wpN6-r9fJxU3pGLNFaYFWD0sxONboOgVyQ3Bg0xp0rDcZCG1wtteFQSy8bsFI10cVGW09zcf-vPeX0McVh3O3TlPvz4w7BEjkCg_QLmGRE3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083393072</pqid></control><display><type>article</type><title>Information Geometry and the Renormalization Group</title><source>Publicly Available Content (ProQuest)</source><creator>Maity, Reevu ; Mahapatra, Subhash ; Sarkar, Tapobrata</creator><creatorcontrib>Maity, Reevu ; Mahapatra, Subhash ; Sarkar, Tapobrata</creatorcontrib><description>Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality, for both classical and quantum systems, in an universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1503.03978</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Critical point ; Curvature ; Flow equations ; Geometry ; Information theory ; Parameter identification ; Scaling</subject><ispartof>arXiv.org, 2015-10</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083393072?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Maity, Reevu</creatorcontrib><creatorcontrib>Mahapatra, Subhash</creatorcontrib><creatorcontrib>Sarkar, Tapobrata</creatorcontrib><title>Information Geometry and the Renormalization Group</title><title>arXiv.org</title><description>Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality, for both classical and quantum systems, in an universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective.</description><subject>Critical point</subject><subject>Curvature</subject><subject>Flow equations</subject><subject>Geometry</subject><subject>Information theory</subject><subject>Parameter identification</subject><subject>Scaling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1Lw0AURQdBsNT-AHcB14lv3ps3H0spWgsFQbovk8wEU9pMnSSi_nordnXhnsu5QtxJqJRlhgefv7rPSjJQBeSMvRIzJJKlVYg3YjEMewBAbZCZZgLXfZvy0Y9d6otVTMc45u_C96EY32PxFvs_eOh-LoOcptOtuG79YYiLS87F9vlpu3wpN6-r9fJxU3pGLNFaYFWD0sxONboOgVyQ3Bg0xp0rDcZCG1wtteFQSy8bsFI10cVGW09zcf-vPeX0McVh3O3TlPvz4w7BEjkCg_QLmGRE3w</recordid><startdate>20151019</startdate><enddate>20151019</enddate><creator>Maity, Reevu</creator><creator>Mahapatra, Subhash</creator><creator>Sarkar, Tapobrata</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151019</creationdate><title>Information Geometry and the Renormalization Group</title><author>Maity, Reevu ; Mahapatra, Subhash ; Sarkar, Tapobrata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-288054b0465594c6bdd39d15c7277959460780fd9b1675db1a1c0814ce9ec68a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Critical point</topic><topic>Curvature</topic><topic>Flow equations</topic><topic>Geometry</topic><topic>Information theory</topic><topic>Parameter identification</topic><topic>Scaling</topic><toplevel>online_resources</toplevel><creatorcontrib>Maity, Reevu</creatorcontrib><creatorcontrib>Mahapatra, Subhash</creatorcontrib><creatorcontrib>Sarkar, Tapobrata</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maity, Reevu</au><au>Mahapatra, Subhash</au><au>Sarkar, Tapobrata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information Geometry and the Renormalization Group</atitle><jtitle>arXiv.org</jtitle><date>2015-10-19</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality, for both classical and quantum systems, in an universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1503.03978</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083393072 |
source | Publicly Available Content (ProQuest) |
subjects | Critical point Curvature Flow equations Geometry Information theory Parameter identification Scaling |
title | Information Geometry and the Renormalization Group |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20Geometry%20and%20the%20Renormalization%20Group&rft.jtitle=arXiv.org&rft.au=Maity,%20Reevu&rft.date=2015-10-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1503.03978&rft_dat=%3Cproquest%3E2083393072%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-288054b0465594c6bdd39d15c7277959460780fd9b1675db1a1c0814ce9ec68a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083393072&rft_id=info:pmid/&rfr_iscdi=true |