Loading…

Information Geometry and the Renormalization Group

Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality, for both classi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-10
Main Authors: Maity, Reevu, Mahapatra, Subhash, Sarkar, Tapobrata
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Maity, Reevu
Mahapatra, Subhash
Sarkar, Tapobrata
description Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality, for both classical and quantum systems, in an universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective.
doi_str_mv 10.48550/arxiv.1503.03978
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083393072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083393072</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-288054b0465594c6bdd39d15c7277959460780fd9b1675db1a1c0814ce9ec68a3</originalsourceid><addsrcrecordid>eNotjU1Lw0AURQdBsNT-AHcB14lv3ps3H0spWgsFQbovk8wEU9pMnSSi_nordnXhnsu5QtxJqJRlhgefv7rPSjJQBeSMvRIzJJKlVYg3YjEMewBAbZCZZgLXfZvy0Y9d6otVTMc45u_C96EY32PxFvs_eOh-LoOcptOtuG79YYiLS87F9vlpu3wpN6-r9fJxU3pGLNFaYFWD0sxONboOgVyQ3Bg0xp0rDcZCG1wtteFQSy8bsFI10cVGW09zcf-vPeX0McVh3O3TlPvz4w7BEjkCg_QLmGRE3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083393072</pqid></control><display><type>article</type><title>Information Geometry and the Renormalization Group</title><source>Publicly Available Content (ProQuest)</source><creator>Maity, Reevu ; Mahapatra, Subhash ; Sarkar, Tapobrata</creator><creatorcontrib>Maity, Reevu ; Mahapatra, Subhash ; Sarkar, Tapobrata</creatorcontrib><description>Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality, for both classical and quantum systems, in an universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1503.03978</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Critical point ; Curvature ; Flow equations ; Geometry ; Information theory ; Parameter identification ; Scaling</subject><ispartof>arXiv.org, 2015-10</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083393072?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Maity, Reevu</creatorcontrib><creatorcontrib>Mahapatra, Subhash</creatorcontrib><creatorcontrib>Sarkar, Tapobrata</creatorcontrib><title>Information Geometry and the Renormalization Group</title><title>arXiv.org</title><description>Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality, for both classical and quantum systems, in an universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective.</description><subject>Critical point</subject><subject>Curvature</subject><subject>Flow equations</subject><subject>Geometry</subject><subject>Information theory</subject><subject>Parameter identification</subject><subject>Scaling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1Lw0AURQdBsNT-AHcB14lv3ps3H0spWgsFQbovk8wEU9pMnSSi_nordnXhnsu5QtxJqJRlhgefv7rPSjJQBeSMvRIzJJKlVYg3YjEMewBAbZCZZgLXfZvy0Y9d6otVTMc45u_C96EY32PxFvs_eOh-LoOcptOtuG79YYiLS87F9vlpu3wpN6-r9fJxU3pGLNFaYFWD0sxONboOgVyQ3Bg0xp0rDcZCG1wtteFQSy8bsFI10cVGW09zcf-vPeX0McVh3O3TlPvz4w7BEjkCg_QLmGRE3w</recordid><startdate>20151019</startdate><enddate>20151019</enddate><creator>Maity, Reevu</creator><creator>Mahapatra, Subhash</creator><creator>Sarkar, Tapobrata</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151019</creationdate><title>Information Geometry and the Renormalization Group</title><author>Maity, Reevu ; Mahapatra, Subhash ; Sarkar, Tapobrata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-288054b0465594c6bdd39d15c7277959460780fd9b1675db1a1c0814ce9ec68a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Critical point</topic><topic>Curvature</topic><topic>Flow equations</topic><topic>Geometry</topic><topic>Information theory</topic><topic>Parameter identification</topic><topic>Scaling</topic><toplevel>online_resources</toplevel><creatorcontrib>Maity, Reevu</creatorcontrib><creatorcontrib>Mahapatra, Subhash</creatorcontrib><creatorcontrib>Sarkar, Tapobrata</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maity, Reevu</au><au>Mahapatra, Subhash</au><au>Sarkar, Tapobrata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information Geometry and the Renormalization Group</atitle><jtitle>arXiv.org</jtitle><date>2015-10-19</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality, for both classical and quantum systems, in an universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1503.03978</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083393072
source Publicly Available Content (ProQuest)
subjects Critical point
Curvature
Flow equations
Geometry
Information theory
Parameter identification
Scaling
title Information Geometry and the Renormalization Group
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20Geometry%20and%20the%20Renormalization%20Group&rft.jtitle=arXiv.org&rft.au=Maity,%20Reevu&rft.date=2015-10-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1503.03978&rft_dat=%3Cproquest%3E2083393072%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-288054b0465594c6bdd39d15c7277959460780fd9b1675db1a1c0814ce9ec68a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083393072&rft_id=info:pmid/&rfr_iscdi=true