Loading…
The semi-classical limit of large fermionic systems
We study a system of \(N\) fermions in the regime where the intensity of the interaction scales as \(1/N\) and with an effective semi-classical parameter \(\hbar=N^{-1/d}\) where \(d\) is the space dimension. For a large class of interaction potentials and of external electromagnetic fields, we prov...
Saved in:
Published in: | arXiv.org 2019-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Solovej, Jan Philip S{ø}ren Fournais Lewin, Mathieu |
description | We study a system of \(N\) fermions in the regime where the intensity of the interaction scales as \(1/N\) and with an effective semi-classical parameter \(\hbar=N^{-1/d}\) where \(d\) is the space dimension. For a large class of interaction potentials and of external electromagnetic fields, we prove the convergence to the Thomas-Fermi minimizers in the limit \(N\to\infty\). The limit is expressed using many-particle coherent states and Wigner functions. The method of proof is based on a fermionic de Finetti-Hewitt-Savage theorem in phase space and on a careful analysis of the possible lack of compactness at infinity. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083410311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083410311</sourcerecordid><originalsourceid>FETCH-proquest_journals_20834103113</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNEgCBbtHQZcB5JMq92L4gG6LyFMbUrSaCZdeHtdeABXf_H-RlQGUcuuMWYnauZZKWVOZ9O2WAnsJwKm6KULltk7GyD46AukEYLND4KRcvRp8Q74zYUiH8R2tIGp_nUvjrdrf7nLZ06vlbgMc1rz8qXBqA4brVBr_O_6ABTPNCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083410311</pqid></control><display><type>article</type><title>The semi-classical limit of large fermionic systems</title><source>Publicly Available Content Database</source><creator>Solovej, Jan Philip ; S{ø}ren Fournais ; Lewin, Mathieu</creator><creatorcontrib>Solovej, Jan Philip ; S{ø}ren Fournais ; Lewin, Mathieu</creatorcontrib><description>We study a system of \(N\) fermions in the regime where the intensity of the interaction scales as \(1/N\) and with an effective semi-classical parameter \(\hbar=N^{-1/d}\) where \(d\) is the space dimension. For a large class of interaction potentials and of external electromagnetic fields, we prove the convergence to the Thomas-Fermi minimizers in the limit \(N\to\infty\). The limit is expressed using many-particle coherent states and Wigner functions. The method of proof is based on a fermionic de Finetti-Hewitt-Savage theorem in phase space and on a careful analysis of the possible lack of compactness at infinity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Electromagnetic fields ; Fermions</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083410311?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Solovej, Jan Philip</creatorcontrib><creatorcontrib>S{ø}ren Fournais</creatorcontrib><creatorcontrib>Lewin, Mathieu</creatorcontrib><title>The semi-classical limit of large fermionic systems</title><title>arXiv.org</title><description>We study a system of \(N\) fermions in the regime where the intensity of the interaction scales as \(1/N\) and with an effective semi-classical parameter \(\hbar=N^{-1/d}\) where \(d\) is the space dimension. For a large class of interaction potentials and of external electromagnetic fields, we prove the convergence to the Thomas-Fermi minimizers in the limit \(N\to\infty\). The limit is expressed using many-particle coherent states and Wigner functions. The method of proof is based on a fermionic de Finetti-Hewitt-Savage theorem in phase space and on a careful analysis of the possible lack of compactness at infinity.</description><subject>Electromagnetic fields</subject><subject>Fermions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykEKwjAQQNEgCBbtHQZcB5JMq92L4gG6LyFMbUrSaCZdeHtdeABXf_H-RlQGUcuuMWYnauZZKWVOZ9O2WAnsJwKm6KULltk7GyD46AukEYLND4KRcvRp8Q74zYUiH8R2tIGp_nUvjrdrf7nLZ06vlbgMc1rz8qXBqA4brVBr_O_6ABTPNCQ</recordid><startdate>20190513</startdate><enddate>20190513</enddate><creator>Solovej, Jan Philip</creator><creator>S{ø}ren Fournais</creator><creator>Lewin, Mathieu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190513</creationdate><title>The semi-classical limit of large fermionic systems</title><author>Solovej, Jan Philip ; S{ø}ren Fournais ; Lewin, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20834103113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Electromagnetic fields</topic><topic>Fermions</topic><toplevel>online_resources</toplevel><creatorcontrib>Solovej, Jan Philip</creatorcontrib><creatorcontrib>S{ø}ren Fournais</creatorcontrib><creatorcontrib>Lewin, Mathieu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solovej, Jan Philip</au><au>S{ø}ren Fournais</au><au>Lewin, Mathieu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The semi-classical limit of large fermionic systems</atitle><jtitle>arXiv.org</jtitle><date>2019-05-13</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We study a system of \(N\) fermions in the regime where the intensity of the interaction scales as \(1/N\) and with an effective semi-classical parameter \(\hbar=N^{-1/d}\) where \(d\) is the space dimension. For a large class of interaction potentials and of external electromagnetic fields, we prove the convergence to the Thomas-Fermi minimizers in the limit \(N\to\infty\). The limit is expressed using many-particle coherent states and Wigner functions. The method of proof is based on a fermionic de Finetti-Hewitt-Savage theorem in phase space and on a careful analysis of the possible lack of compactness at infinity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083410311 |
source | Publicly Available Content Database |
subjects | Electromagnetic fields Fermions |
title | The semi-classical limit of large fermionic systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20semi-classical%20limit%20of%20large%20fermionic%20systems&rft.jtitle=arXiv.org&rft.au=Solovej,%20Jan%20Philip&rft.date=2019-05-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083410311%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20834103113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083410311&rft_id=info:pmid/&rfr_iscdi=true |