Loading…
Detection of Nonlocal Spin Entanglement by Light Emission from a Superconducting p-n Junction
We model a superconducting p-n junction in which the n- and the p-sides are contacted through two optical quantum dots (QDs), each embedded into a photonic nanocavity. Whenever a Cooper pair is transferred from the n-side to the p-side, two photons are emitted. When the two electrons of a Cooper pai...
Saved in:
Published in: | arXiv.org 2014-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We model a superconducting p-n junction in which the n- and the p-sides are contacted through two optical quantum dots (QDs), each embedded into a photonic nanocavity. Whenever a Cooper pair is transferred from the n-side to the p-side, two photons are emitted. When the two electrons of a Cooper pair are transported through different QDs, polarization-entangled photons are created, provided that the Cooper pairs retain their spin singlet character while being spatially separated on the two QDs. We show that a CHSH Bell-type measurement is able to detect the entanglement of the photons over a broad range of microscopic parameters, even in the presence of parasitic processes and imperfections. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1412.8619 |