Loading…

Non-equilibrium Theory of Arrested Spinodal Decomposition

The Non-equilibrium Self-consistent Generalized Langevin Equation theory of irreversible relax- ation [Phys. Rev. E (2010) 82, 061503; ibid. 061504] is applied to the description of the non- equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids....

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-10
Main Authors: Olais-Govea, José Manuel, López-Flores, Leticia, Medina-Noyola, Magdaleno
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Olais-Govea, José Manuel
López-Flores, Leticia
Medina-Noyola, Magdaleno
description The Non-equilibrium Self-consistent Generalized Langevin Equation theory of irreversible relax- ation [Phys. Rev. E (2010) 82, 061503; ibid. 061504] is applied to the description of the non- equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermo- dynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass tran- sition and from above by the spinodal dynamic arrest line we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the for- mation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083495693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083495693</sourcerecordid><originalsourceid>FETCH-proquest_journals_20834956933</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9MvP000tLM3MyUwqyizNVQjJSM0vqlTIT1NwLCpKLS5JTVEILsjMy09JzFFwSU3Ozy3IL84syczP42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpUCd8Vn5pUV5QKl4IwMLYxNLUzNLY2PiVAEAq1U24Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083495693</pqid></control><display><type>article</type><title>Non-equilibrium Theory of Arrested Spinodal Decomposition</title><source>Publicly Available Content Database</source><creator>Olais-Govea, José Manuel ; López-Flores, Leticia ; Medina-Noyola, Magdaleno</creator><creatorcontrib>Olais-Govea, José Manuel ; López-Flores, Leticia ; Medina-Noyola, Magdaleno</creatorcontrib><description>The Non-equilibrium Self-consistent Generalized Langevin Equation theory of irreversible relax- ation [Phys. Rev. E (2010) 82, 061503; ibid. 061504] is applied to the description of the non- equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermo- dynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass tran- sition and from above by the spinodal dynamic arrest line we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the for- mation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decomposition ; Domains ; Dynamic stability ; Equilibrium ; Ergodic processes ; Gels ; Glass transition temperature ; High temperature ; Liquid phases ; Liquids ; Mathematical models ; Phase separation ; Physical properties ; Spinodal decomposition ; Temperature dependence ; Theory</subject><ispartof>arXiv.org, 2015-10</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083495693?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Olais-Govea, José Manuel</creatorcontrib><creatorcontrib>López-Flores, Leticia</creatorcontrib><creatorcontrib>Medina-Noyola, Magdaleno</creatorcontrib><title>Non-equilibrium Theory of Arrested Spinodal Decomposition</title><title>arXiv.org</title><description>The Non-equilibrium Self-consistent Generalized Langevin Equation theory of irreversible relax- ation [Phys. Rev. E (2010) 82, 061503; ibid. 061504] is applied to the description of the non- equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermo- dynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass tran- sition and from above by the spinodal dynamic arrest line we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the for- mation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.</description><subject>Decomposition</subject><subject>Domains</subject><subject>Dynamic stability</subject><subject>Equilibrium</subject><subject>Ergodic processes</subject><subject>Gels</subject><subject>Glass transition temperature</subject><subject>High temperature</subject><subject>Liquid phases</subject><subject>Liquids</subject><subject>Mathematical models</subject><subject>Phase separation</subject><subject>Physical properties</subject><subject>Spinodal decomposition</subject><subject>Temperature dependence</subject><subject>Theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9MvP000tLM3MyUwqyizNVQjJSM0vqlTIT1NwLCpKLS5JTVEILsjMy09JzFFwSU3Ozy3IL84syczP42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpUCd8Vn5pUV5QKl4IwMLYxNLUzNLY2PiVAEAq1U24Q</recordid><startdate>20151020</startdate><enddate>20151020</enddate><creator>Olais-Govea, José Manuel</creator><creator>López-Flores, Leticia</creator><creator>Medina-Noyola, Magdaleno</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151020</creationdate><title>Non-equilibrium Theory of Arrested Spinodal Decomposition</title><author>Olais-Govea, José Manuel ; López-Flores, Leticia ; Medina-Noyola, Magdaleno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20834956933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Decomposition</topic><topic>Domains</topic><topic>Dynamic stability</topic><topic>Equilibrium</topic><topic>Ergodic processes</topic><topic>Gels</topic><topic>Glass transition temperature</topic><topic>High temperature</topic><topic>Liquid phases</topic><topic>Liquids</topic><topic>Mathematical models</topic><topic>Phase separation</topic><topic>Physical properties</topic><topic>Spinodal decomposition</topic><topic>Temperature dependence</topic><topic>Theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Olais-Govea, José Manuel</creatorcontrib><creatorcontrib>López-Flores, Leticia</creatorcontrib><creatorcontrib>Medina-Noyola, Magdaleno</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olais-Govea, José Manuel</au><au>López-Flores, Leticia</au><au>Medina-Noyola, Magdaleno</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Non-equilibrium Theory of Arrested Spinodal Decomposition</atitle><jtitle>arXiv.org</jtitle><date>2015-10-20</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>The Non-equilibrium Self-consistent Generalized Langevin Equation theory of irreversible relax- ation [Phys. Rev. E (2010) 82, 061503; ibid. 061504] is applied to the description of the non- equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermo- dynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass tran- sition and from above by the spinodal dynamic arrest line we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the for- mation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083495693
source Publicly Available Content Database
subjects Decomposition
Domains
Dynamic stability
Equilibrium
Ergodic processes
Gels
Glass transition temperature
High temperature
Liquid phases
Liquids
Mathematical models
Phase separation
Physical properties
Spinodal decomposition
Temperature dependence
Theory
title Non-equilibrium Theory of Arrested Spinodal Decomposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Non-equilibrium%20Theory%20of%20Arrested%20Spinodal%20Decomposition&rft.jtitle=arXiv.org&rft.au=Olais-Govea,%20Jos%C3%A9%20Manuel&rft.date=2015-10-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083495693%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20834956933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083495693&rft_id=info:pmid/&rfr_iscdi=true