Loading…

Isomonodromic deformations of logarithmic connections and stability

Let X_0 be a compact connected Riemann surface of genus g with D_0\subset X_0 an ordered subset of cardinality n, and let E_G be a holomorphic principal G-bundle on X_0, where G is a complex reductive affine algebraic group, that admits a logarithmic connection \nabla_0 with polar divisor D_0. Let (...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-10
Main Authors: Biswas, Indranil, Heu, Viktoria, Hurtubise, Jacques
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Biswas, Indranil
Heu, Viktoria
Hurtubise, Jacques
description Let X_0 be a compact connected Riemann surface of genus g with D_0\subset X_0 an ordered subset of cardinality n, and let E_G be a holomorphic principal G-bundle on X_0, where G is a complex reductive affine algebraic group, that admits a logarithmic connection \nabla_0 with polar divisor D_0. Let (\cal{E}_G, \nabla) be the universal isomonodromic deformation of (E_G,\nabla_0) over the universal Teichm\"uller curve (\cal{X}, \cal{D})\rightarrow {Teich}_{g,n}, where {Teich}_{g,n} is the Teichm\"uller space for genus g Riemann surfaces with n-marked points. We prove the following: Assume that g>1 and n= 0. Then there is a closed complex analytic subset \cal{Y} \subset {Teich}_{(g,n)}, of codimension at least \(g\), such that for any t\in {Teich}_{(g,n)} \setminus \mathcal{Y}, the principal G-bundle \cal{E}_G\vert_{{\cal X}_t} is semistable, where {\cal X}_t is the compact Riemann surface over \(t\). Assume that g>0, and if g= 1, then n >0. Also, assume that the monodromy representation for \nabla_0 does not factor through some proper parabolic subgroup of G. Then there is a closed complex analytic subset \(\cal{Y}' \subset {Teich}_{(g,n)}, of codimension at least g, such that for any t\in {Teich}_{(g,n)} \setminus \cal{Y}', the principal G-bundle \)\cal{E}_G\vert_{{\cal X}_t}$ is semistable. Assume that g>1. Assume that the monodromy representation for \nabla_0 does not factor through some proper parabolic subgroup of G. Then there is a closed complex analytic subset \cal{Y}" \subset {Teich}_{(g,n)}, of codimension at least g-1, such that for any t\in {Teich}_{(g,n)} \setminus \cal{Y}', the principal G-bundle \cal{E}_G\vert_{{\cal X}_t} is stable.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083496365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083496365</sourcerecordid><originalsourceid>FETCH-proquest_journals_20834963653</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScCzFpa52Lort7ifnRlCRXc9PBt1fRB3A6w3dmpOBCbKqu5nxBSsSRMcbbLW8aUZD-hBAggk4QnKLaWEhBZgcRKVjq4SqTy7ePKYjRqC_JqClmeXHe5eeKzK30aMpfl2R92J_7Y3VP8JgM5mGEKcU3DZx1ot61om3Ef9cLlQo7ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083496365</pqid></control><display><type>article</type><title>Isomonodromic deformations of logarithmic connections and stability</title><source>Publicly Available Content Database</source><creator>Biswas, Indranil ; Heu, Viktoria ; Hurtubise, Jacques</creator><creatorcontrib>Biswas, Indranil ; Heu, Viktoria ; Hurtubise, Jacques</creatorcontrib><description>Let X_0 be a compact connected Riemann surface of genus g with D_0\subset X_0 an ordered subset of cardinality n, and let E_G be a holomorphic principal G-bundle on X_0, where G is a complex reductive affine algebraic group, that admits a logarithmic connection \nabla_0 with polar divisor D_0. Let (\cal{E}_G, \nabla) be the universal isomonodromic deformation of (E_G,\nabla_0) over the universal Teichm\"uller curve (\cal{X}, \cal{D})\rightarrow {Teich}_{g,n}, where {Teich}_{g,n} is the Teichm\"uller space for genus g Riemann surfaces with n-marked points. We prove the following: Assume that g&gt;1 and n= 0. Then there is a closed complex analytic subset \cal{Y} \subset {Teich}_{(g,n)}, of codimension at least \(g\), such that for any t\in {Teich}_{(g,n)} \setminus \mathcal{Y}, the principal G-bundle \cal{E}_G\vert_{{\cal X}_t} is semistable, where {\cal X}_t is the compact Riemann surface over \(t\). Assume that g&gt;0, and if g= 1, then n &gt;0. Also, assume that the monodromy representation for \nabla_0 does not factor through some proper parabolic subgroup of G. Then there is a closed complex analytic subset \(\cal{Y}' \subset {Teich}_{(g,n)}, of codimension at least g, such that for any t\in {Teich}_{(g,n)} \setminus \cal{Y}', the principal G-bundle \)\cal{E}_G\vert_{{\cal X}_t}$ is semistable. Assume that g&gt;1. Assume that the monodromy representation for \nabla_0 does not factor through some proper parabolic subgroup of G. Then there is a closed complex analytic subset \cal{Y}" \subset {Teich}_{(g,n)}, of codimension at least g-1, such that for any t\in {Teich}_{(g,n)} \setminus \cal{Y}', the principal G-bundle \cal{E}_G\vert_{{\cal X}_t} is stable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bundling ; Deformation ; Mathematical analysis ; Representations ; Riemann surfaces ; Set theory ; Subgroups</subject><ispartof>arXiv.org, 2015-10</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083496365?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Biswas, Indranil</creatorcontrib><creatorcontrib>Heu, Viktoria</creatorcontrib><creatorcontrib>Hurtubise, Jacques</creatorcontrib><title>Isomonodromic deformations of logarithmic connections and stability</title><title>arXiv.org</title><description>Let X_0 be a compact connected Riemann surface of genus g with D_0\subset X_0 an ordered subset of cardinality n, and let E_G be a holomorphic principal G-bundle on X_0, where G is a complex reductive affine algebraic group, that admits a logarithmic connection \nabla_0 with polar divisor D_0. Let (\cal{E}_G, \nabla) be the universal isomonodromic deformation of (E_G,\nabla_0) over the universal Teichm\"uller curve (\cal{X}, \cal{D})\rightarrow {Teich}_{g,n}, where {Teich}_{g,n} is the Teichm\"uller space for genus g Riemann surfaces with n-marked points. We prove the following: Assume that g&gt;1 and n= 0. Then there is a closed complex analytic subset \cal{Y} \subset {Teich}_{(g,n)}, of codimension at least \(g\), such that for any t\in {Teich}_{(g,n)} \setminus \mathcal{Y}, the principal G-bundle \cal{E}_G\vert_{{\cal X}_t} is semistable, where {\cal X}_t is the compact Riemann surface over \(t\). Assume that g&gt;0, and if g= 1, then n &gt;0. Also, assume that the monodromy representation for \nabla_0 does not factor through some proper parabolic subgroup of G. Then there is a closed complex analytic subset \(\cal{Y}' \subset {Teich}_{(g,n)}, of codimension at least g, such that for any t\in {Teich}_{(g,n)} \setminus \cal{Y}', the principal G-bundle \)\cal{E}_G\vert_{{\cal X}_t}$ is semistable. Assume that g&gt;1. Assume that the monodromy representation for \nabla_0 does not factor through some proper parabolic subgroup of G. Then there is a closed complex analytic subset \cal{Y}" \subset {Teich}_{(g,n)}, of codimension at least g-1, such that for any t\in {Teich}_{(g,n)} \setminus \cal{Y}', the principal G-bundle \cal{E}_G\vert_{{\cal X}_t} is stable.</description><subject>Bundling</subject><subject>Deformation</subject><subject>Mathematical analysis</subject><subject>Representations</subject><subject>Riemann surfaces</subject><subject>Set theory</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScCzFpa52Lort7ifnRlCRXc9PBt1fRB3A6w3dmpOBCbKqu5nxBSsSRMcbbLW8aUZD-hBAggk4QnKLaWEhBZgcRKVjq4SqTy7ePKYjRqC_JqClmeXHe5eeKzK30aMpfl2R92J_7Y3VP8JgM5mGEKcU3DZx1ot61om3Ef9cLlQo7ZA</recordid><startdate>20151018</startdate><enddate>20151018</enddate><creator>Biswas, Indranil</creator><creator>Heu, Viktoria</creator><creator>Hurtubise, Jacques</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151018</creationdate><title>Isomonodromic deformations of logarithmic connections and stability</title><author>Biswas, Indranil ; Heu, Viktoria ; Hurtubise, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20834963653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bundling</topic><topic>Deformation</topic><topic>Mathematical analysis</topic><topic>Representations</topic><topic>Riemann surfaces</topic><topic>Set theory</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Indranil</creatorcontrib><creatorcontrib>Heu, Viktoria</creatorcontrib><creatorcontrib>Hurtubise, Jacques</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Indranil</au><au>Heu, Viktoria</au><au>Hurtubise, Jacques</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Isomonodromic deformations of logarithmic connections and stability</atitle><jtitle>arXiv.org</jtitle><date>2015-10-18</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Let X_0 be a compact connected Riemann surface of genus g with D_0\subset X_0 an ordered subset of cardinality n, and let E_G be a holomorphic principal G-bundle on X_0, where G is a complex reductive affine algebraic group, that admits a logarithmic connection \nabla_0 with polar divisor D_0. Let (\cal{E}_G, \nabla) be the universal isomonodromic deformation of (E_G,\nabla_0) over the universal Teichm\"uller curve (\cal{X}, \cal{D})\rightarrow {Teich}_{g,n}, where {Teich}_{g,n} is the Teichm\"uller space for genus g Riemann surfaces with n-marked points. We prove the following: Assume that g&gt;1 and n= 0. Then there is a closed complex analytic subset \cal{Y} \subset {Teich}_{(g,n)}, of codimension at least \(g\), such that for any t\in {Teich}_{(g,n)} \setminus \mathcal{Y}, the principal G-bundle \cal{E}_G\vert_{{\cal X}_t} is semistable, where {\cal X}_t is the compact Riemann surface over \(t\). Assume that g&gt;0, and if g= 1, then n &gt;0. Also, assume that the monodromy representation for \nabla_0 does not factor through some proper parabolic subgroup of G. Then there is a closed complex analytic subset \(\cal{Y}' \subset {Teich}_{(g,n)}, of codimension at least g, such that for any t\in {Teich}_{(g,n)} \setminus \cal{Y}', the principal G-bundle \)\cal{E}_G\vert_{{\cal X}_t}$ is semistable. Assume that g&gt;1. Assume that the monodromy representation for \nabla_0 does not factor through some proper parabolic subgroup of G. Then there is a closed complex analytic subset \cal{Y}" \subset {Teich}_{(g,n)}, of codimension at least g-1, such that for any t\in {Teich}_{(g,n)} \setminus \cal{Y}', the principal G-bundle \cal{E}_G\vert_{{\cal X}_t} is stable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083496365
source Publicly Available Content Database
subjects Bundling
Deformation
Mathematical analysis
Representations
Riemann surfaces
Set theory
Subgroups
title Isomonodromic deformations of logarithmic connections and stability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Isomonodromic%20deformations%20of%20logarithmic%20connections%20and%20stability&rft.jtitle=arXiv.org&rft.au=Biswas,%20Indranil&rft.date=2015-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083496365%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20834963653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083496365&rft_id=info:pmid/&rfr_iscdi=true