Loading…
Experimental exploration of the optomechanical attractor diagram and its dynamics
We demonstrate experimental exploration of the attractor diagram of an optomechanical system where the optical forces compensate for the mechanical losses. In this case stable self-induced oscillations occur but only for specific mirror amplitudes and laser detunings. We demonstrate that we can ampl...
Saved in:
Published in: | arXiv.org 2015-04 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate experimental exploration of the attractor diagram of an optomechanical system where the optical forces compensate for the mechanical losses. In this case stable self-induced oscillations occur but only for specific mirror amplitudes and laser detunings. We demonstrate that we can amplify the mechanical mode to an amplitude 500 times larger than the thermal amplitude at 300K. The lack of unstable or chaotic motion allows us to manipulate our system into a non-trivial steady state and explore the dynamics of self-induced oscillations in great detail. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1504.06119 |