Loading…
Classically conformal U(1)\(^\prime\) extended Standard Model and Higgs vacuum stability
We consider the minimal U(1)\(^\prime\) extension of the Standard Model (SM) with conformal invariance at the classical level, where in addition to the SM particle contents, three generations of right-handed neutrinos and a U(1)\(^\prime\) Higgs field are introduced. In the presence of the three rig...
Saved in:
Published in: | arXiv.org 2015-04 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Oda, Satsuki Okada, Nobuchika Takahashi, Dai-suke |
description | We consider the minimal U(1)\(^\prime\) extension of the Standard Model (SM) with conformal invariance at the classical level, where in addition to the SM particle contents, three generations of right-handed neutrinos and a U(1)\(^\prime\) Higgs field are introduced. In the presence of the three right-handed neutrinos, which are responsible for the seesaw mechanism, this model is free from all the gauge and gravitational anomalies. The U(1)\(^\prime\) gauge symmetry is radiatively broken via the Coleman-Weinberg mechanism, by which the U(1)\(^\prime\) gauge boson (\(Z^\prime\) boson) mass as well as the Majorana mass for the right-handed neutrinos are generated. The radiative U(1)\(^\prime\) symmetry breaking also induces a negative mass squared for the SM Higgs doublet to trigger the electroweak symmetry breaking. In this context, we investigate a possibility to solve the SM Higgs vacuum instability problem. The model includes only three free parameters (U(1)\(^\prime\) charge of the SM Higgs doublet, U(1)\(^\prime\) gauge coupling and \(Z^\prime\) boson mass), for which we perform parameter scan, and identify a parameter region resolving the SM Higgs vacuum instability. We also examine naturalness of the model. The heavy states associated with the U(1)\(^\prime\) symmetry breaking contribute to the SM Higgs self-energy. We find an upper bound on \(Z^\prime\) boson mass, \(m_{Z^\prime} \lesssim 6\) TeV, in order to avoid a fine-tuning severer than 10 % level. The \(Z^\prime\) boson in this mass range can be discovered at the LHC Run-2 in the near future. |
doi_str_mv | 10.48550/arxiv.1504.06291 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083512352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083512352</sourcerecordid><originalsourceid>FETCH-proquest_journals_20835123523</originalsourceid><addsrcrecordid>eNqNirGKAjEUAMOBcKJ-gN2Da7RwTV423lqLYmOlB1csyrtNlEh24yVZ0b_Xwg-wGoYZxoaCZ3mhFJ9SuNlrJhTPMz7DufhgXZRSTIoc8ZMNYjxzznH2jUrJLvtdOIrRVuTcHSrfHH2oycHPSIzL0b68BFubcgzmlkyjjYZtokZT0LDx2jh4Cqzt6RThSlXb1hAT_Vln073POkdy0Qxe7LGv1XK3WE8uwf-3JqbD2beheaYD8kIqgVKhfO96AJnoR1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083512352</pqid></control><display><type>article</type><title>Classically conformal U(1)\(^\prime\) extended Standard Model and Higgs vacuum stability</title><source>Publicly Available Content Database</source><creator>Oda, Satsuki ; Okada, Nobuchika ; Takahashi, Dai-suke</creator><creatorcontrib>Oda, Satsuki ; Okada, Nobuchika ; Takahashi, Dai-suke</creatorcontrib><description>We consider the minimal U(1)\(^\prime\) extension of the Standard Model (SM) with conformal invariance at the classical level, where in addition to the SM particle contents, three generations of right-handed neutrinos and a U(1)\(^\prime\) Higgs field are introduced. In the presence of the three right-handed neutrinos, which are responsible for the seesaw mechanism, this model is free from all the gauge and gravitational anomalies. The U(1)\(^\prime\) gauge symmetry is radiatively broken via the Coleman-Weinberg mechanism, by which the U(1)\(^\prime\) gauge boson (\(Z^\prime\) boson) mass as well as the Majorana mass for the right-handed neutrinos are generated. The radiative U(1)\(^\prime\) symmetry breaking also induces a negative mass squared for the SM Higgs doublet to trigger the electroweak symmetry breaking. In this context, we investigate a possibility to solve the SM Higgs vacuum instability problem. The model includes only three free parameters (U(1)\(^\prime\) charge of the SM Higgs doublet, U(1)\(^\prime\) gauge coupling and \(Z^\prime\) boson mass), for which we perform parameter scan, and identify a parameter region resolving the SM Higgs vacuum instability. We also examine naturalness of the model. The heavy states associated with the U(1)\(^\prime\) symmetry breaking contribute to the SM Higgs self-energy. We find an upper bound on \(Z^\prime\) boson mass, \(m_{Z^\prime} \lesssim 6\) TeV, in order to avoid a fine-tuning severer than 10 % level. The \(Z^\prime\) boson in this mass range can be discovered at the LHC Run-2 in the near future.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1504.06291</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Broken symmetry ; Mathematical models ; Neutrinos ; Parameter identification ; Stability ; Standard model (particle physics) ; Symmetry ; Upper bounds</subject><ispartof>arXiv.org, 2015-04</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083512352?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Oda, Satsuki</creatorcontrib><creatorcontrib>Okada, Nobuchika</creatorcontrib><creatorcontrib>Takahashi, Dai-suke</creatorcontrib><title>Classically conformal U(1)\(^\prime\) extended Standard Model and Higgs vacuum stability</title><title>arXiv.org</title><description>We consider the minimal U(1)\(^\prime\) extension of the Standard Model (SM) with conformal invariance at the classical level, where in addition to the SM particle contents, three generations of right-handed neutrinos and a U(1)\(^\prime\) Higgs field are introduced. In the presence of the three right-handed neutrinos, which are responsible for the seesaw mechanism, this model is free from all the gauge and gravitational anomalies. The U(1)\(^\prime\) gauge symmetry is radiatively broken via the Coleman-Weinberg mechanism, by which the U(1)\(^\prime\) gauge boson (\(Z^\prime\) boson) mass as well as the Majorana mass for the right-handed neutrinos are generated. The radiative U(1)\(^\prime\) symmetry breaking also induces a negative mass squared for the SM Higgs doublet to trigger the electroweak symmetry breaking. In this context, we investigate a possibility to solve the SM Higgs vacuum instability problem. The model includes only three free parameters (U(1)\(^\prime\) charge of the SM Higgs doublet, U(1)\(^\prime\) gauge coupling and \(Z^\prime\) boson mass), for which we perform parameter scan, and identify a parameter region resolving the SM Higgs vacuum instability. We also examine naturalness of the model. The heavy states associated with the U(1)\(^\prime\) symmetry breaking contribute to the SM Higgs self-energy. We find an upper bound on \(Z^\prime\) boson mass, \(m_{Z^\prime} \lesssim 6\) TeV, in order to avoid a fine-tuning severer than 10 % level. The \(Z^\prime\) boson in this mass range can be discovered at the LHC Run-2 in the near future.</description><subject>Anomalies</subject><subject>Broken symmetry</subject><subject>Mathematical models</subject><subject>Neutrinos</subject><subject>Parameter identification</subject><subject>Stability</subject><subject>Standard model (particle physics)</subject><subject>Symmetry</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirGKAjEUAMOBcKJ-gN2Da7RwTV423lqLYmOlB1csyrtNlEh24yVZ0b_Xwg-wGoYZxoaCZ3mhFJ9SuNlrJhTPMz7DufhgXZRSTIoc8ZMNYjxzznH2jUrJLvtdOIrRVuTcHSrfHH2oycHPSIzL0b68BFubcgzmlkyjjYZtokZT0LDx2jh4Cqzt6RThSlXb1hAT_Vln073POkdy0Qxe7LGv1XK3WE8uwf-3JqbD2beheaYD8kIqgVKhfO96AJnoR1Q</recordid><startdate>20150423</startdate><enddate>20150423</enddate><creator>Oda, Satsuki</creator><creator>Okada, Nobuchika</creator><creator>Takahashi, Dai-suke</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150423</creationdate><title>Classically conformal U(1)\(^\prime\) extended Standard Model and Higgs vacuum stability</title><author>Oda, Satsuki ; Okada, Nobuchika ; Takahashi, Dai-suke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20835123523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anomalies</topic><topic>Broken symmetry</topic><topic>Mathematical models</topic><topic>Neutrinos</topic><topic>Parameter identification</topic><topic>Stability</topic><topic>Standard model (particle physics)</topic><topic>Symmetry</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Oda, Satsuki</creatorcontrib><creatorcontrib>Okada, Nobuchika</creatorcontrib><creatorcontrib>Takahashi, Dai-suke</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oda, Satsuki</au><au>Okada, Nobuchika</au><au>Takahashi, Dai-suke</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Classically conformal U(1)\(^\prime\) extended Standard Model and Higgs vacuum stability</atitle><jtitle>arXiv.org</jtitle><date>2015-04-23</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We consider the minimal U(1)\(^\prime\) extension of the Standard Model (SM) with conformal invariance at the classical level, where in addition to the SM particle contents, three generations of right-handed neutrinos and a U(1)\(^\prime\) Higgs field are introduced. In the presence of the three right-handed neutrinos, which are responsible for the seesaw mechanism, this model is free from all the gauge and gravitational anomalies. The U(1)\(^\prime\) gauge symmetry is radiatively broken via the Coleman-Weinberg mechanism, by which the U(1)\(^\prime\) gauge boson (\(Z^\prime\) boson) mass as well as the Majorana mass for the right-handed neutrinos are generated. The radiative U(1)\(^\prime\) symmetry breaking also induces a negative mass squared for the SM Higgs doublet to trigger the electroweak symmetry breaking. In this context, we investigate a possibility to solve the SM Higgs vacuum instability problem. The model includes only three free parameters (U(1)\(^\prime\) charge of the SM Higgs doublet, U(1)\(^\prime\) gauge coupling and \(Z^\prime\) boson mass), for which we perform parameter scan, and identify a parameter region resolving the SM Higgs vacuum instability. We also examine naturalness of the model. The heavy states associated with the U(1)\(^\prime\) symmetry breaking contribute to the SM Higgs self-energy. We find an upper bound on \(Z^\prime\) boson mass, \(m_{Z^\prime} \lesssim 6\) TeV, in order to avoid a fine-tuning severer than 10 % level. The \(Z^\prime\) boson in this mass range can be discovered at the LHC Run-2 in the near future.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1504.06291</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083512352 |
source | Publicly Available Content Database |
subjects | Anomalies Broken symmetry Mathematical models Neutrinos Parameter identification Stability Standard model (particle physics) Symmetry Upper bounds |
title | Classically conformal U(1)\(^\prime\) extended Standard Model and Higgs vacuum stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Classically%20conformal%20U(1)%5C(%5E%5Cprime%5C)%20extended%20Standard%20Model%20and%20Higgs%20vacuum%20stability&rft.jtitle=arXiv.org&rft.au=Oda,%20Satsuki&rft.date=2015-04-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1504.06291&rft_dat=%3Cproquest%3E2083512352%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20835123523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083512352&rft_id=info:pmid/&rfr_iscdi=true |