Loading…

Hyper-Systolic Processing on APE100/Quadrics: N^2-Loop Computations

We investigate the performance gains from hyper-systolic implementations of n^2-loop problems on the massively parallel computer Quadrics, exploiting its 3-dimensional interprocessor connectivity. For illustration we study the communication aspects of an exact molecular dynamics simulation of n part...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 1995-12
Main Authors: Lippert, Th, Ritzenhöfer, G, Glässner, U, Hoeber, H, Seyfried, A, Schilling, K
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lippert, Th
Ritzenhöfer, G
Glässner, U
Hoeber, H
Seyfried, A
Schilling, K
description We investigate the performance gains from hyper-systolic implementations of n^2-loop problems on the massively parallel computer Quadrics, exploiting its 3-dimensional interprocessor connectivity. For illustration we study the communication aspects of an exact molecular dynamics simulation of n particles with Coulomb (or gravitational) interactions. We compare the interprocessor communication costs of the standard-systolic and the hyper-systolic approaches for various granularities. We predict gain factors as large as 3 on the Q4 and 8 on the QH4 and measure actual performances on these machine configurations. We conclude that it appears feasable to investigate the thermodynamics of a full gravitating n-body problem with O(10000) particles using the new method on a QH4 system.
doi_str_mv 10.48550/arxiv.9512020
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083590947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083590947</sourcerecordid><originalsourceid>FETCH-proquest_journals_20835909473</originalsourceid><addsrcrecordid>eNqNysEKgkAQgOElCIry2nmhszXOuqndQgoPEUadEzGLjXJsRyPfvg49QKf_8P1CTDyY-aHWMM_t27xmkfYQEHpiiEp5bugjDoTDfAMAXASotRqKOOnq0rqHjhu6m0KmloqS2VRXSZVcpWsPYL5v87M1BS_l7oTulqiWMT3qtskbQxWPRf-S37l0fh2J6WZ9jBO3tvRsS26yG7W2-lKGECodQeQH6r_rA85QPps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083590947</pqid></control><display><type>article</type><title>Hyper-Systolic Processing on APE100/Quadrics: N^2-Loop Computations</title><source>Publicly Available Content Database</source><creator>Lippert, Th ; Ritzenhöfer, G ; Glässner, U ; Hoeber, H ; Seyfried, A ; Schilling, K</creator><creatorcontrib>Lippert, Th ; Ritzenhöfer, G ; Glässner, U ; Hoeber, H ; Seyfried, A ; Schilling, K</creatorcontrib><description>We investigate the performance gains from hyper-systolic implementations of n^2-loop problems on the massively parallel computer Quadrics, exploiting its 3-dimensional interprocessor connectivity. For illustration we study the communication aspects of an exact molecular dynamics simulation of n particles with Coulomb (or gravitational) interactions. We compare the interprocessor communication costs of the standard-systolic and the hyper-systolic approaches for various granularities. We predict gain factors as large as 3 on the Q4 and 8 on the QH4 and measure actual performances on these machine configurations. We conclude that it appears feasable to investigate the thermodynamics of a full gravitating n-body problem with O(10000) particles using the new method on a QH4 system.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9512020</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Interprocessor communication ; Molecular dynamics ; Parallel computers</subject><ispartof>arXiv.org, 1995-12</ispartof><rights>1995. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083590947?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Lippert, Th</creatorcontrib><creatorcontrib>Ritzenhöfer, G</creatorcontrib><creatorcontrib>Glässner, U</creatorcontrib><creatorcontrib>Hoeber, H</creatorcontrib><creatorcontrib>Seyfried, A</creatorcontrib><creatorcontrib>Schilling, K</creatorcontrib><title>Hyper-Systolic Processing on APE100/Quadrics: N^2-Loop Computations</title><title>arXiv.org</title><description>We investigate the performance gains from hyper-systolic implementations of n^2-loop problems on the massively parallel computer Quadrics, exploiting its 3-dimensional interprocessor connectivity. For illustration we study the communication aspects of an exact molecular dynamics simulation of n particles with Coulomb (or gravitational) interactions. We compare the interprocessor communication costs of the standard-systolic and the hyper-systolic approaches for various granularities. We predict gain factors as large as 3 on the Q4 and 8 on the QH4 and measure actual performances on these machine configurations. We conclude that it appears feasable to investigate the thermodynamics of a full gravitating n-body problem with O(10000) particles using the new method on a QH4 system.</description><subject>Computer simulation</subject><subject>Interprocessor communication</subject><subject>Molecular dynamics</subject><subject>Parallel computers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNysEKgkAQgOElCIry2nmhszXOuqndQgoPEUadEzGLjXJsRyPfvg49QKf_8P1CTDyY-aHWMM_t27xmkfYQEHpiiEp5bugjDoTDfAMAXASotRqKOOnq0rqHjhu6m0KmloqS2VRXSZVcpWsPYL5v87M1BS_l7oTulqiWMT3qtskbQxWPRf-S37l0fh2J6WZ9jBO3tvRsS26yG7W2-lKGECodQeQH6r_rA85QPps</recordid><startdate>19951213</startdate><enddate>19951213</enddate><creator>Lippert, Th</creator><creator>Ritzenhöfer, G</creator><creator>Glässner, U</creator><creator>Hoeber, H</creator><creator>Seyfried, A</creator><creator>Schilling, K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19951213</creationdate><title>Hyper-Systolic Processing on APE100/Quadrics: N^2-Loop Computations</title><author>Lippert, Th ; Ritzenhöfer, G ; Glässner, U ; Hoeber, H ; Seyfried, A ; Schilling, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20835909473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Computer simulation</topic><topic>Interprocessor communication</topic><topic>Molecular dynamics</topic><topic>Parallel computers</topic><toplevel>online_resources</toplevel><creatorcontrib>Lippert, Th</creatorcontrib><creatorcontrib>Ritzenhöfer, G</creatorcontrib><creatorcontrib>Glässner, U</creatorcontrib><creatorcontrib>Hoeber, H</creatorcontrib><creatorcontrib>Seyfried, A</creatorcontrib><creatorcontrib>Schilling, K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lippert, Th</au><au>Ritzenhöfer, G</au><au>Glässner, U</au><au>Hoeber, H</au><au>Seyfried, A</au><au>Schilling, K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Hyper-Systolic Processing on APE100/Quadrics: N^2-Loop Computations</atitle><jtitle>arXiv.org</jtitle><date>1995-12-13</date><risdate>1995</risdate><eissn>2331-8422</eissn><abstract>We investigate the performance gains from hyper-systolic implementations of n^2-loop problems on the massively parallel computer Quadrics, exploiting its 3-dimensional interprocessor connectivity. For illustration we study the communication aspects of an exact molecular dynamics simulation of n particles with Coulomb (or gravitational) interactions. We compare the interprocessor communication costs of the standard-systolic and the hyper-systolic approaches for various granularities. We predict gain factors as large as 3 on the Q4 and 8 on the QH4 and measure actual performances on these machine configurations. We conclude that it appears feasable to investigate the thermodynamics of a full gravitating n-body problem with O(10000) particles using the new method on a QH4 system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9512020</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 1995-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083590947
source Publicly Available Content Database
subjects Computer simulation
Interprocessor communication
Molecular dynamics
Parallel computers
title Hyper-Systolic Processing on APE100/Quadrics: N^2-Loop Computations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Hyper-Systolic%20Processing%20on%20APE100/Quadrics:%20N%5E2-Loop%20Computations&rft.jtitle=arXiv.org&rft.au=Lippert,%20Th&rft.date=1995-12-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9512020&rft_dat=%3Cproquest%3E2083590947%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20835909473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083590947&rft_id=info:pmid/&rfr_iscdi=true