Loading…

Intersection theory on moduli of disks, open KdV and Virasoro

We define a theory of descendent integration on the moduli spaces of stable pointed disks. The descendent integrals are proved to be coefficients of the \(\tau\)-function of an open KdV heirarchy. A relation between the integrals and a representation of half the Virasoro algebra is also proved. The...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-03
Main Authors: Pandharipande, Rahul, Solomon, Jake P, Tessler, Ran J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pandharipande, Rahul
Solomon, Jake P
Tessler, Ran J
description We define a theory of descendent integration on the moduli spaces of stable pointed disks. The descendent integrals are proved to be coefficients of the \(\tau\)-function of an open KdV heirarchy. A relation between the integrals and a representation of half the Virasoro algebra is also proved. The construction of the theory requires an in depth study of homotopy classes of multivalued boundary conditions. Geometric recursions based on the combined structure of the boundary conditions and the moduli space are used to compute the integrals. We also provide a detailed analysis of orientations. Our open KdV and Virasoro constraints uniquely specify a theory of higher genus open descendent integrals. As a result, we obtain an open analog (governing all genera) of Witten's conjectures concerning descendent integrals on the Deligne-Mumford space of stable curves.
doi_str_mv 10.48550/arxiv.1409.2191
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083591797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083591797</sourcerecordid><originalsourceid>FETCH-LOGICAL-a931-94f438c9dc38d90c81c5969db3b446117e3ba080f89f002adbd935824ff41a8e3</originalsourceid><addsrcrecordid>eNotjktLAzEURoMgtNTuuwy4dcYkN5nJXbiQ4qNYcFO6LZk8cGpNajIj-u8d0NV3Vud8hKw4q6VWit2a_N1_1VwyrAVHfkHmAoBXWgoxI8tSjowx0bRCKZiTu00cfC7eDn2KdHjzKf_QiT6SG089TYG6vryXG5rOPtIXt6cmOrrvsykppytyGcyp-OX_Lsju8WG3fq62r0-b9f22MjiVUQYJ2qKzoB0yq7lV2KDroJOy4bz10BmmWdAYpmvGdQ5BaSFDkNxoDwty_ac95_Q5-jIcjmnMcSoeBNOgkLfYwi_am0jE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083591797</pqid></control><display><type>article</type><title>Intersection theory on moduli of disks, open KdV and Virasoro</title><source>Publicly Available Content Database</source><creator>Pandharipande, Rahul ; Solomon, Jake P ; Tessler, Ran J</creator><creatorcontrib>Pandharipande, Rahul ; Solomon, Jake P ; Tessler, Ran J</creatorcontrib><description>We define a theory of descendent integration on the moduli spaces of stable pointed disks. The descendent integrals are proved to be coefficients of the \(\tau\)-function of an open KdV heirarchy. A relation between the integrals and a representation of half the Virasoro algebra is also proved. The construction of the theory requires an in depth study of homotopy classes of multivalued boundary conditions. Geometric recursions based on the combined structure of the boundary conditions and the moduli space are used to compute the integrals. We also provide a detailed analysis of orientations. Our open KdV and Virasoro constraints uniquely specify a theory of higher genus open descendent integrals. As a result, we obtain an open analog (governing all genera) of Witten's conjectures concerning descendent integrals on the Deligne-Mumford space of stable curves.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1409.2191</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Disks ; Integrals</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083591797?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Pandharipande, Rahul</creatorcontrib><creatorcontrib>Solomon, Jake P</creatorcontrib><creatorcontrib>Tessler, Ran J</creatorcontrib><title>Intersection theory on moduli of disks, open KdV and Virasoro</title><title>arXiv.org</title><description>We define a theory of descendent integration on the moduli spaces of stable pointed disks. The descendent integrals are proved to be coefficients of the \(\tau\)-function of an open KdV heirarchy. A relation between the integrals and a representation of half the Virasoro algebra is also proved. The construction of the theory requires an in depth study of homotopy classes of multivalued boundary conditions. Geometric recursions based on the combined structure of the boundary conditions and the moduli space are used to compute the integrals. We also provide a detailed analysis of orientations. Our open KdV and Virasoro constraints uniquely specify a theory of higher genus open descendent integrals. As a result, we obtain an open analog (governing all genera) of Witten's conjectures concerning descendent integrals on the Deligne-Mumford space of stable curves.</description><subject>Boundary conditions</subject><subject>Disks</subject><subject>Integrals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjktLAzEURoMgtNTuuwy4dcYkN5nJXbiQ4qNYcFO6LZk8cGpNajIj-u8d0NV3Vud8hKw4q6VWit2a_N1_1VwyrAVHfkHmAoBXWgoxI8tSjowx0bRCKZiTu00cfC7eDn2KdHjzKf_QiT6SG089TYG6vryXG5rOPtIXt6cmOrrvsykppytyGcyp-OX_Lsju8WG3fq62r0-b9f22MjiVUQYJ2qKzoB0yq7lV2KDroJOy4bz10BmmWdAYpmvGdQ5BaSFDkNxoDwty_ac95_Q5-jIcjmnMcSoeBNOgkLfYwi_am0jE</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Pandharipande, Rahul</creator><creator>Solomon, Jake P</creator><creator>Tessler, Ran J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220303</creationdate><title>Intersection theory on moduli of disks, open KdV and Virasoro</title><author>Pandharipande, Rahul ; Solomon, Jake P ; Tessler, Ran J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a931-94f438c9dc38d90c81c5969db3b446117e3ba080f89f002adbd935824ff41a8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Disks</topic><topic>Integrals</topic><toplevel>online_resources</toplevel><creatorcontrib>Pandharipande, Rahul</creatorcontrib><creatorcontrib>Solomon, Jake P</creatorcontrib><creatorcontrib>Tessler, Ran J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandharipande, Rahul</au><au>Solomon, Jake P</au><au>Tessler, Ran J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intersection theory on moduli of disks, open KdV and Virasoro</atitle><jtitle>arXiv.org</jtitle><date>2022-03-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We define a theory of descendent integration on the moduli spaces of stable pointed disks. The descendent integrals are proved to be coefficients of the \(\tau\)-function of an open KdV heirarchy. A relation between the integrals and a representation of half the Virasoro algebra is also proved. The construction of the theory requires an in depth study of homotopy classes of multivalued boundary conditions. Geometric recursions based on the combined structure of the boundary conditions and the moduli space are used to compute the integrals. We also provide a detailed analysis of orientations. Our open KdV and Virasoro constraints uniquely specify a theory of higher genus open descendent integrals. As a result, we obtain an open analog (governing all genera) of Witten's conjectures concerning descendent integrals on the Deligne-Mumford space of stable curves.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1409.2191</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083591797
source Publicly Available Content Database
subjects Boundary conditions
Disks
Integrals
title Intersection theory on moduli of disks, open KdV and Virasoro
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intersection%20theory%20on%20moduli%20of%20disks,%20open%20KdV%20and%20Virasoro&rft.jtitle=arXiv.org&rft.au=Pandharipande,%20Rahul&rft.date=2022-03-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1409.2191&rft_dat=%3Cproquest%3E2083591797%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a931-94f438c9dc38d90c81c5969db3b446117e3ba080f89f002adbd935824ff41a8e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083591797&rft_id=info:pmid/&rfr_iscdi=true