Loading…
Intersection theory on moduli of disks, open KdV and Virasoro
We define a theory of descendent integration on the moduli spaces of stable pointed disks. The descendent integrals are proved to be coefficients of the \(\tau\)-function of an open KdV heirarchy. A relation between the integrals and a representation of half the Virasoro algebra is also proved. The...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pandharipande, Rahul Solomon, Jake P Tessler, Ran J |
description | We define a theory of descendent integration on the moduli spaces of stable pointed disks. The descendent integrals are proved to be coefficients of the \(\tau\)-function of an open KdV heirarchy. A relation between the integrals and a representation of half the Virasoro algebra is also proved. The construction of the theory requires an in depth study of homotopy classes of multivalued boundary conditions. Geometric recursions based on the combined structure of the boundary conditions and the moduli space are used to compute the integrals. We also provide a detailed analysis of orientations. Our open KdV and Virasoro constraints uniquely specify a theory of higher genus open descendent integrals. As a result, we obtain an open analog (governing all genera) of Witten's conjectures concerning descendent integrals on the Deligne-Mumford space of stable curves. |
doi_str_mv | 10.48550/arxiv.1409.2191 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083591797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083591797</sourcerecordid><originalsourceid>FETCH-LOGICAL-a931-94f438c9dc38d90c81c5969db3b446117e3ba080f89f002adbd935824ff41a8e3</originalsourceid><addsrcrecordid>eNotjktLAzEURoMgtNTuuwy4dcYkN5nJXbiQ4qNYcFO6LZk8cGpNajIj-u8d0NV3Vud8hKw4q6VWit2a_N1_1VwyrAVHfkHmAoBXWgoxI8tSjowx0bRCKZiTu00cfC7eDn2KdHjzKf_QiT6SG089TYG6vryXG5rOPtIXt6cmOrrvsykppytyGcyp-OX_Lsju8WG3fq62r0-b9f22MjiVUQYJ2qKzoB0yq7lV2KDroJOy4bz10BmmWdAYpmvGdQ5BaSFDkNxoDwty_ac95_Q5-jIcjmnMcSoeBNOgkLfYwi_am0jE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083591797</pqid></control><display><type>article</type><title>Intersection theory on moduli of disks, open KdV and Virasoro</title><source>Publicly Available Content Database</source><creator>Pandharipande, Rahul ; Solomon, Jake P ; Tessler, Ran J</creator><creatorcontrib>Pandharipande, Rahul ; Solomon, Jake P ; Tessler, Ran J</creatorcontrib><description>We define a theory of descendent integration on the moduli spaces of stable pointed disks. The descendent integrals are proved to be coefficients of the \(\tau\)-function of an open KdV heirarchy. A relation between the integrals and a representation of half the Virasoro algebra is also proved. The construction of the theory requires an in depth study of homotopy classes of multivalued boundary conditions. Geometric recursions based on the combined structure of the boundary conditions and the moduli space are used to compute the integrals. We also provide a detailed analysis of orientations. Our open KdV and Virasoro constraints uniquely specify a theory of higher genus open descendent integrals. As a result, we obtain an open analog (governing all genera) of Witten's conjectures concerning descendent integrals on the Deligne-Mumford space of stable curves.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1409.2191</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Disks ; Integrals</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083591797?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Pandharipande, Rahul</creatorcontrib><creatorcontrib>Solomon, Jake P</creatorcontrib><creatorcontrib>Tessler, Ran J</creatorcontrib><title>Intersection theory on moduli of disks, open KdV and Virasoro</title><title>arXiv.org</title><description>We define a theory of descendent integration on the moduli spaces of stable pointed disks. The descendent integrals are proved to be coefficients of the \(\tau\)-function of an open KdV heirarchy. A relation between the integrals and a representation of half the Virasoro algebra is also proved. The construction of the theory requires an in depth study of homotopy classes of multivalued boundary conditions. Geometric recursions based on the combined structure of the boundary conditions and the moduli space are used to compute the integrals. We also provide a detailed analysis of orientations. Our open KdV and Virasoro constraints uniquely specify a theory of higher genus open descendent integrals. As a result, we obtain an open analog (governing all genera) of Witten's conjectures concerning descendent integrals on the Deligne-Mumford space of stable curves.</description><subject>Boundary conditions</subject><subject>Disks</subject><subject>Integrals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjktLAzEURoMgtNTuuwy4dcYkN5nJXbiQ4qNYcFO6LZk8cGpNajIj-u8d0NV3Vud8hKw4q6VWit2a_N1_1VwyrAVHfkHmAoBXWgoxI8tSjowx0bRCKZiTu00cfC7eDn2KdHjzKf_QiT6SG089TYG6vryXG5rOPtIXt6cmOrrvsykppytyGcyp-OX_Lsju8WG3fq62r0-b9f22MjiVUQYJ2qKzoB0yq7lV2KDroJOy4bz10BmmWdAYpmvGdQ5BaSFDkNxoDwty_ac95_Q5-jIcjmnMcSoeBNOgkLfYwi_am0jE</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Pandharipande, Rahul</creator><creator>Solomon, Jake P</creator><creator>Tessler, Ran J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220303</creationdate><title>Intersection theory on moduli of disks, open KdV and Virasoro</title><author>Pandharipande, Rahul ; Solomon, Jake P ; Tessler, Ran J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a931-94f438c9dc38d90c81c5969db3b446117e3ba080f89f002adbd935824ff41a8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Disks</topic><topic>Integrals</topic><toplevel>online_resources</toplevel><creatorcontrib>Pandharipande, Rahul</creatorcontrib><creatorcontrib>Solomon, Jake P</creatorcontrib><creatorcontrib>Tessler, Ran J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandharipande, Rahul</au><au>Solomon, Jake P</au><au>Tessler, Ran J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intersection theory on moduli of disks, open KdV and Virasoro</atitle><jtitle>arXiv.org</jtitle><date>2022-03-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We define a theory of descendent integration on the moduli spaces of stable pointed disks. The descendent integrals are proved to be coefficients of the \(\tau\)-function of an open KdV heirarchy. A relation between the integrals and a representation of half the Virasoro algebra is also proved. The construction of the theory requires an in depth study of homotopy classes of multivalued boundary conditions. Geometric recursions based on the combined structure of the boundary conditions and the moduli space are used to compute the integrals. We also provide a detailed analysis of orientations. Our open KdV and Virasoro constraints uniquely specify a theory of higher genus open descendent integrals. As a result, we obtain an open analog (governing all genera) of Witten's conjectures concerning descendent integrals on the Deligne-Mumford space of stable curves.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1409.2191</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083591797 |
source | Publicly Available Content Database |
subjects | Boundary conditions Disks Integrals |
title | Intersection theory on moduli of disks, open KdV and Virasoro |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intersection%20theory%20on%20moduli%20of%20disks,%20open%20KdV%20and%20Virasoro&rft.jtitle=arXiv.org&rft.au=Pandharipande,%20Rahul&rft.date=2022-03-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1409.2191&rft_dat=%3Cproquest%3E2083591797%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a931-94f438c9dc38d90c81c5969db3b446117e3ba080f89f002adbd935824ff41a8e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083591797&rft_id=info:pmid/&rfr_iscdi=true |