Loading…

Intervals of Permutations with a Fixed Number of Descents are Shellable

The set of all permutations, ordered by pattern containment, is a poset. We present an order isomorphism from the poset of permutations with a fixed number of descents to a certain poset of words with subword order. We use this bijection to show that intervals of permutations with a fixed number of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-07
Main Author: Smith, Jason P
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Smith, Jason P
description The set of all permutations, ordered by pattern containment, is a poset. We present an order isomorphism from the poset of permutations with a fixed number of descents to a certain poset of words with subword order. We use this bijection to show that intervals of permutations with a fixed number of descents are shellable, and we present a formula for the M\"obius function of these intervals. We present an alternative proof for a result on the M\"obius function of intervals \([1,\pi]\) such that \(\pi\) has exactly one descent. We prove that if \(\pi\) has exactly one descent and avoids 456123 and 356124, then the intervals \([1,\pi]\) have no nontrivial disconnected subintervals; we conjecture that these intervals are shellable.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083692917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083692917</sourcerecordid><originalsourceid>FETCH-proquest_journals_20836929173</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMgWLR3eOC6kCb2t1arbkTQfUn1lbakieajHt8KHsDVLGaYCQkY53GUrxibkdDanlLK0owlCQ_I7qAcmqeQFnQDJzSDd8J1Wll4da4FAWX3xhsc_VCj-TYbtFdUzoIwCOcWpRS1xAWZNuMEwx_nZFluL-t9dDf64dG6qtfeqFFVjOY8LVgRZ_y_6gPYyjtK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083692917</pqid></control><display><type>article</type><title>Intervals of Permutations with a Fixed Number of Descents are Shellable</title><source>ProQuest - Publicly Available Content Database</source><creator>Smith, Jason P</creator><creatorcontrib>Smith, Jason P</creatorcontrib><description>The set of all permutations, ordered by pattern containment, is a poset. We present an order isomorphism from the poset of permutations with a fixed number of descents to a certain poset of words with subword order. We use this bijection to show that intervals of permutations with a fixed number of descents are shellable, and we present a formula for the M\"obius function of these intervals. We present an alternative proof for a result on the M\"obius function of intervals \([1,\pi]\) such that \(\pi\) has exactly one descent. We prove that if \(\pi\) has exactly one descent and avoids 456123 and 356124, then the intervals \([1,\pi]\) have no nontrivial disconnected subintervals; we conjecture that these intervals are shellable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Containment ; Descent ; Intervals ; Isomorphism ; Permutations</subject><ispartof>arXiv.org, 2015-07</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083692917?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Smith, Jason P</creatorcontrib><title>Intervals of Permutations with a Fixed Number of Descents are Shellable</title><title>arXiv.org</title><description>The set of all permutations, ordered by pattern containment, is a poset. We present an order isomorphism from the poset of permutations with a fixed number of descents to a certain poset of words with subword order. We use this bijection to show that intervals of permutations with a fixed number of descents are shellable, and we present a formula for the M\"obius function of these intervals. We present an alternative proof for a result on the M\"obius function of intervals \([1,\pi]\) such that \(\pi\) has exactly one descent. We prove that if \(\pi\) has exactly one descent and avoids 456123 and 356124, then the intervals \([1,\pi]\) have no nontrivial disconnected subintervals; we conjecture that these intervals are shellable.</description><subject>Containment</subject><subject>Descent</subject><subject>Intervals</subject><subject>Isomorphism</subject><subject>Permutations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEsKwjAUAIMgWLR3eOC6kCb2t1arbkTQfUn1lbakieajHt8KHsDVLGaYCQkY53GUrxibkdDanlLK0owlCQ_I7qAcmqeQFnQDJzSDd8J1Wll4da4FAWX3xhsc_VCj-TYbtFdUzoIwCOcWpRS1xAWZNuMEwx_nZFluL-t9dDf64dG6qtfeqFFVjOY8LVgRZ_y_6gPYyjtK</recordid><startdate>20150730</startdate><enddate>20150730</enddate><creator>Smith, Jason P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150730</creationdate><title>Intervals of Permutations with a Fixed Number of Descents are Shellable</title><author>Smith, Jason P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20836929173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Containment</topic><topic>Descent</topic><topic>Intervals</topic><topic>Isomorphism</topic><topic>Permutations</topic><toplevel>online_resources</toplevel><creatorcontrib>Smith, Jason P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Jason P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Intervals of Permutations with a Fixed Number of Descents are Shellable</atitle><jtitle>arXiv.org</jtitle><date>2015-07-30</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>The set of all permutations, ordered by pattern containment, is a poset. We present an order isomorphism from the poset of permutations with a fixed number of descents to a certain poset of words with subword order. We use this bijection to show that intervals of permutations with a fixed number of descents are shellable, and we present a formula for the M\"obius function of these intervals. We present an alternative proof for a result on the M\"obius function of intervals \([1,\pi]\) such that \(\pi\) has exactly one descent. We prove that if \(\pi\) has exactly one descent and avoids 456123 and 356124, then the intervals \([1,\pi]\) have no nontrivial disconnected subintervals; we conjecture that these intervals are shellable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083692917
source ProQuest - Publicly Available Content Database
subjects Containment
Descent
Intervals
Isomorphism
Permutations
title Intervals of Permutations with a Fixed Number of Descents are Shellable
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Intervals%20of%20Permutations%20with%20a%20Fixed%20Number%20of%20Descents%20are%20Shellable&rft.jtitle=arXiv.org&rft.au=Smith,%20Jason%20P&rft.date=2015-07-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083692917%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20836929173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083692917&rft_id=info:pmid/&rfr_iscdi=true