Loading…

Directed d-mer diffusion describing Kardar-Parisi-Zhang type of surface growth

We show that d+1-dimensional surface growth models can be mapped onto driven lattice gases of d-mers. The continuous surface growth corresponds to one dimensional drift of d-mers perpendicular to the (d-1)-dimensional "plane" spanned by the d-mers. This facilitates efficient, bit-coded alg...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2010-02
Main Authors: Odor, Geza, Liedke, Bartosz, Heinig, Karl-Heinz
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Odor, Geza
Liedke, Bartosz
Heinig, Karl-Heinz
description We show that d+1-dimensional surface growth models can be mapped onto driven lattice gases of d-mers. The continuous surface growth corresponds to one dimensional drift of d-mers perpendicular to the (d-1)-dimensional "plane" spanned by the d-mers. This facilitates efficient, bit-coded algorithms with generalized Kawasaki dynamics of spins. Our simulations in d=2,3,4,5 dimensions provide scaling exponent estimates on much larger system sizes and simulations times published so far, where the effective growth exponent exhibits an increase. We provide evidence for the agreement with field theoretical predictions of the Kardar-Parisi-Zhang universality class and numerical results. We show that the (2+1)-dimensional exponents conciliate with the values suggested by Lassig within error margin, for the largest system sizes studied here, but we can't support his predictions for (3+1)d numerically.
doi_str_mv 10.48550/arxiv.0907.3297
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083745458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083745458</sourcerecordid><originalsourceid>FETCH-LOGICAL-a518-885c61ce50a1cceeb596a22d3b56d131df3e8412a7abbbd04cf049a7d421643</originalsourceid><addsrcrecordid>eNotjUtLAzEYAIMgWGrvHgOes-a5yR6lvopFRTx5KV-SL22Kdmuy6-PfW9DTwBxmCDkTvNHOGH4B5Tt_NrzjtlGys0dkIpUSzGkpT8is1i3nXLZWGqMm5OEqFwwDRhrZOxYac0pjzf2ORqyhZJ93a3oPJUJhT1Byzex1Awc3_OyR9onWsSQISNel_xo2p-Q4wVvF2T-n5Pnm-mV-x5aPt4v55ZKBEY45Z0IrAhoOIgREb7oWpIzKmzYKJWJS6LSQYMF7H7kOiesObNRStFpNyflfdF_6jxHrsNr2Y9kdfivJnbLaaOPUL5JET2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083745458</pqid></control><display><type>article</type><title>Directed d-mer diffusion describing Kardar-Parisi-Zhang type of surface growth</title><source>Publicly Available Content Database</source><creator>Odor, Geza ; Liedke, Bartosz ; Heinig, Karl-Heinz</creator><creatorcontrib>Odor, Geza ; Liedke, Bartosz ; Heinig, Karl-Heinz</creatorcontrib><description>We show that d+1-dimensional surface growth models can be mapped onto driven lattice gases of d-mers. The continuous surface growth corresponds to one dimensional drift of d-mers perpendicular to the (d-1)-dimensional "plane" spanned by the d-mers. This facilitates efficient, bit-coded algorithms with generalized Kawasaki dynamics of spins. Our simulations in d=2,3,4,5 dimensions provide scaling exponent estimates on much larger system sizes and simulations times published so far, where the effective growth exponent exhibits an increase. We provide evidence for the agreement with field theoretical predictions of the Kardar-Parisi-Zhang universality class and numerical results. We show that the (2+1)-dimensional exponents conciliate with the values suggested by Lassig within error margin, for the largest system sizes studied here, but we can't support his predictions for (3+1)d numerically.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0907.3297</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer simulation ; Mathematical models</subject><ispartof>arXiv.org, 2010-02</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083745458?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Odor, Geza</creatorcontrib><creatorcontrib>Liedke, Bartosz</creatorcontrib><creatorcontrib>Heinig, Karl-Heinz</creatorcontrib><title>Directed d-mer diffusion describing Kardar-Parisi-Zhang type of surface growth</title><title>arXiv.org</title><description>We show that d+1-dimensional surface growth models can be mapped onto driven lattice gases of d-mers. The continuous surface growth corresponds to one dimensional drift of d-mers perpendicular to the (d-1)-dimensional "plane" spanned by the d-mers. This facilitates efficient, bit-coded algorithms with generalized Kawasaki dynamics of spins. Our simulations in d=2,3,4,5 dimensions provide scaling exponent estimates on much larger system sizes and simulations times published so far, where the effective growth exponent exhibits an increase. We provide evidence for the agreement with field theoretical predictions of the Kardar-Parisi-Zhang universality class and numerical results. We show that the (2+1)-dimensional exponents conciliate with the values suggested by Lassig within error margin, for the largest system sizes studied here, but we can't support his predictions for (3+1)d numerically.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Mathematical models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUtLAzEYAIMgWGrvHgOes-a5yR6lvopFRTx5KV-SL22Kdmuy6-PfW9DTwBxmCDkTvNHOGH4B5Tt_NrzjtlGys0dkIpUSzGkpT8is1i3nXLZWGqMm5OEqFwwDRhrZOxYac0pjzf2ORqyhZJ93a3oPJUJhT1Byzex1Awc3_OyR9onWsSQISNel_xo2p-Q4wVvF2T-n5Pnm-mV-x5aPt4v55ZKBEY45Z0IrAhoOIgREb7oWpIzKmzYKJWJS6LSQYMF7H7kOiesObNRStFpNyflfdF_6jxHrsNr2Y9kdfivJnbLaaOPUL5JET2E</recordid><startdate>20100225</startdate><enddate>20100225</enddate><creator>Odor, Geza</creator><creator>Liedke, Bartosz</creator><creator>Heinig, Karl-Heinz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100225</creationdate><title>Directed d-mer diffusion describing Kardar-Parisi-Zhang type of surface growth</title><author>Odor, Geza ; Liedke, Bartosz ; Heinig, Karl-Heinz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a518-885c61ce50a1cceeb596a22d3b56d131df3e8412a7abbbd04cf049a7d421643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Mathematical models</topic><toplevel>online_resources</toplevel><creatorcontrib>Odor, Geza</creatorcontrib><creatorcontrib>Liedke, Bartosz</creatorcontrib><creatorcontrib>Heinig, Karl-Heinz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odor, Geza</au><au>Liedke, Bartosz</au><au>Heinig, Karl-Heinz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed d-mer diffusion describing Kardar-Parisi-Zhang type of surface growth</atitle><jtitle>arXiv.org</jtitle><date>2010-02-25</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>We show that d+1-dimensional surface growth models can be mapped onto driven lattice gases of d-mers. The continuous surface growth corresponds to one dimensional drift of d-mers perpendicular to the (d-1)-dimensional "plane" spanned by the d-mers. This facilitates efficient, bit-coded algorithms with generalized Kawasaki dynamics of spins. Our simulations in d=2,3,4,5 dimensions provide scaling exponent estimates on much larger system sizes and simulations times published so far, where the effective growth exponent exhibits an increase. We provide evidence for the agreement with field theoretical predictions of the Kardar-Parisi-Zhang universality class and numerical results. We show that the (2+1)-dimensional exponents conciliate with the values suggested by Lassig within error margin, for the largest system sizes studied here, but we can't support his predictions for (3+1)d numerically.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0907.3297</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083745458
source Publicly Available Content Database
subjects Algorithms
Computer simulation
Mathematical models
title Directed d-mer diffusion describing Kardar-Parisi-Zhang type of surface growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20d-mer%20diffusion%20describing%20Kardar-Parisi-Zhang%20type%20of%20surface%20growth&rft.jtitle=arXiv.org&rft.au=Odor,%20Geza&rft.date=2010-02-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0907.3297&rft_dat=%3Cproquest%3E2083745458%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a518-885c61ce50a1cceeb596a22d3b56d131df3e8412a7abbbd04cf049a7d421643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083745458&rft_id=info:pmid/&rfr_iscdi=true