Loading…

Matrix De Rham complex and quantum A-infinity algebras

I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A-infinity-algebras, introduced in "Modular operads and Batalin-Vilkovisky geometry" IMRN, Vol. 2007, doi: 10.1093/imrn...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-02
Main Author: Barannikov, Serguei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Barannikov, Serguei
description I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A-infinity-algebras, introduced in "Modular operads and Batalin-Vilkovisky geometry" IMRN, Vol. 2007, doi: 10.1093/imrn/rnm075, is represented via de Rham differential acting on the matrix spaces related with Bernstein-Leites simple associative algebras with odd trace q(N), and with gl(N|N). I also show that the Lagrangians of the matrix integrals from "Noncommmutative Batalin-Vilkovisky geometry and Matrix integrals", Comptes Rendus Mathematique, vol 348 (2010), pp. 359-362, arXiv:0912.5484, are equivariantly closed differential forms.
doi_str_mv 10.48550/arxiv.1001.5264
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083760901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083760901</sourcerecordid><originalsourceid>FETCH-LOGICAL-a511-1704fc33a6ea44f0c283571ae7aef6cfa77939bc5f5c793fa9f328ff13c2f5673</originalsourceid><addsrcrecordid>eNotjctKw0AUQAdBsNTuuxxwnXhn7jySZalPqAil-3I7ztWUPNpMIvHvLejqnNU5QiwV5KawFu6pn6rvXAGo3GpnrsRMI6qsMFrfiEVKRwDQzmtrcSbcGw19NcmHKLdf1MjQNac6TpLaD3keqR3GRq6yquWqrYYfSfVnPPSUbsU1U53i4p9zsXt63K1fss378-t6tcnIKpUpD4YDIrlIxjAEXaD1iqKnyC4weV9ieQiWbbgYU8moC2aFQbN1Hufi7i976rvzGNOwP3Zj316Oew0FegclKPwFgllGkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083760901</pqid></control><display><type>article</type><title>Matrix De Rham complex and quantum A-infinity algebras</title><source>Publicly Available Content Database</source><creator>Barannikov, Serguei</creator><creatorcontrib>Barannikov, Serguei</creatorcontrib><description>I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A-infinity-algebras, introduced in "Modular operads and Batalin-Vilkovisky geometry" IMRN, Vol. 2007, doi: 10.1093/imrn/rnm075, is represented via de Rham differential acting on the matrix spaces related with Bernstein-Leites simple associative algebras with odd trace q(N), and with gl(N|N). I also show that the Lagrangians of the matrix integrals from "Noncommmutative Batalin-Vilkovisky geometry and Matrix integrals", Comptes Rendus Mathematique, vol 348 (2010), pp. 359-362, arXiv:0912.5484, are equivariantly closed differential forms.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1001.5264</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Infinity ; Integrals</subject><ispartof>arXiv.org, 2014-02</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083760901?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Barannikov, Serguei</creatorcontrib><title>Matrix De Rham complex and quantum A-infinity algebras</title><title>arXiv.org</title><description>I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A-infinity-algebras, introduced in "Modular operads and Batalin-Vilkovisky geometry" IMRN, Vol. 2007, doi: 10.1093/imrn/rnm075, is represented via de Rham differential acting on the matrix spaces related with Bernstein-Leites simple associative algebras with odd trace q(N), and with gl(N|N). I also show that the Lagrangians of the matrix integrals from "Noncommmutative Batalin-Vilkovisky geometry and Matrix integrals", Comptes Rendus Mathematique, vol 348 (2010), pp. 359-362, arXiv:0912.5484, are equivariantly closed differential forms.</description><subject>Algebra</subject><subject>Infinity</subject><subject>Integrals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKw0AUQAdBsNTuuxxwnXhn7jySZalPqAil-3I7ztWUPNpMIvHvLejqnNU5QiwV5KawFu6pn6rvXAGo3GpnrsRMI6qsMFrfiEVKRwDQzmtrcSbcGw19NcmHKLdf1MjQNac6TpLaD3keqR3GRq6yquWqrYYfSfVnPPSUbsU1U53i4p9zsXt63K1fss378-t6tcnIKpUpD4YDIrlIxjAEXaD1iqKnyC4weV9ieQiWbbgYU8moC2aFQbN1Hufi7i976rvzGNOwP3Zj316Oew0FegclKPwFgllGkg</recordid><startdate>20140202</startdate><enddate>20140202</enddate><creator>Barannikov, Serguei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140202</creationdate><title>Matrix De Rham complex and quantum A-infinity algebras</title><author>Barannikov, Serguei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a511-1704fc33a6ea44f0c283571ae7aef6cfa77939bc5f5c793fa9f328ff13c2f5673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Infinity</topic><topic>Integrals</topic><toplevel>online_resources</toplevel><creatorcontrib>Barannikov, Serguei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barannikov, Serguei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix De Rham complex and quantum A-infinity algebras</atitle><jtitle>arXiv.org</jtitle><date>2014-02-02</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A-infinity-algebras, introduced in "Modular operads and Batalin-Vilkovisky geometry" IMRN, Vol. 2007, doi: 10.1093/imrn/rnm075, is represented via de Rham differential acting on the matrix spaces related with Bernstein-Leites simple associative algebras with odd trace q(N), and with gl(N|N). I also show that the Lagrangians of the matrix integrals from "Noncommmutative Batalin-Vilkovisky geometry and Matrix integrals", Comptes Rendus Mathematique, vol 348 (2010), pp. 359-362, arXiv:0912.5484, are equivariantly closed differential forms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1001.5264</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083760901
source Publicly Available Content Database
subjects Algebra
Infinity
Integrals
title Matrix De Rham complex and quantum A-infinity algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%20De%20Rham%20complex%20and%20quantum%20A-infinity%20algebras&rft.jtitle=arXiv.org&rft.au=Barannikov,%20Serguei&rft.date=2014-02-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1001.5264&rft_dat=%3Cproquest%3E2083760901%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a511-1704fc33a6ea44f0c283571ae7aef6cfa77939bc5f5c793fa9f328ff13c2f5673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083760901&rft_id=info:pmid/&rfr_iscdi=true