Loading…

On a Conjecture of a Bound for the Exponent of the Schur Multiplier of a Finite \(p\)-Group

Let \(G\) be a \(p\)-group of nilpotency class \(k\) with finite exponent \(\exp(G)\) and let \(m=\lfloor\log_pk\rfloor\). We show that \(\exp(M^{(c)}(G))\) divides \(\exp(G)p^{m(k-1)}\), for all \(c\geq1\), where \(M^{(c)}(G)\) denotes the c-nilpotent multiplier of \(G\). This implies that \(\exp(M...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2010-11
Main Authors: Mashayekhy, Berooz, Hokmabadi, Azam, Mohammadzadeh, Fahimeh
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mashayekhy, Berooz
Hokmabadi, Azam
Mohammadzadeh, Fahimeh
description Let \(G\) be a \(p\)-group of nilpotency class \(k\) with finite exponent \(\exp(G)\) and let \(m=\lfloor\log_pk\rfloor\). We show that \(\exp(M^{(c)}(G))\) divides \(\exp(G)p^{m(k-1)}\), for all \(c\geq1\), where \(M^{(c)}(G)\) denotes the c-nilpotent multiplier of \(G\). This implies that \(\exp(M(G))\) divides \(\exp(G)\) for all finite \(p\)-groups of class at most \(p-1\). Moreover, we show that our result is an improvement of some previous bounds for the exponent of \(M^{(c)}(G)\) given by M. R. Jones, G. Ellis and P. Moravec in some cases.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083772221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083772221</sourcerecordid><originalsourceid>FETCH-proquest_journals_20837722213</originalsourceid><addsrcrecordid>eNqNi80KgkAURocgSMp3uNCmFsJ0J9N1orWJFrVLELERR2Rmmh_o8VPqAVp9HM75ZiRAxnZRukdckNDanlKKhwTjmAXkcZVQQ6ZkzxvnDQfVjnxUXj6hVQZcxyF_ayW5dJOb-NZ03sDFD07oQXDz_RRCCseh3OhyG52M8npF5m09WB7-dknWRX7PzpE26uW5dVWvvJGjqpCmLEkQccf-qz5XVEDl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083772221</pqid></control><display><type>article</type><title>On a Conjecture of a Bound for the Exponent of the Schur Multiplier of a Finite \(p\)-Group</title><source>Publicly Available Content Database</source><creator>Mashayekhy, Berooz ; Hokmabadi, Azam ; Mohammadzadeh, Fahimeh</creator><creatorcontrib>Mashayekhy, Berooz ; Hokmabadi, Azam ; Mohammadzadeh, Fahimeh</creatorcontrib><description>Let \(G\) be a \(p\)-group of nilpotency class \(k\) with finite exponent \(\exp(G)\) and let \(m=\lfloor\log_pk\rfloor\). We show that \(\exp(M^{(c)}(G))\) divides \(\exp(G)p^{m(k-1)}\), for all \(c\geq1\), where \(M^{(c)}(G)\) denotes the c-nilpotent multiplier of \(G\). This implies that \(\exp(M(G))\) divides \(\exp(G)\) for all finite \(p\)-groups of class at most \(p-1\). Moreover, we show that our result is an improvement of some previous bounds for the exponent of \(M^{(c)}(G)\) given by M. R. Jones, G. Ellis and P. Moravec in some cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Multipliers</subject><ispartof>arXiv.org, 2010-11</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083772221?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Mashayekhy, Berooz</creatorcontrib><creatorcontrib>Hokmabadi, Azam</creatorcontrib><creatorcontrib>Mohammadzadeh, Fahimeh</creatorcontrib><title>On a Conjecture of a Bound for the Exponent of the Schur Multiplier of a Finite \(p\)-Group</title><title>arXiv.org</title><description>Let \(G\) be a \(p\)-group of nilpotency class \(k\) with finite exponent \(\exp(G)\) and let \(m=\lfloor\log_pk\rfloor\). We show that \(\exp(M^{(c)}(G))\) divides \(\exp(G)p^{m(k-1)}\), for all \(c\geq1\), where \(M^{(c)}(G)\) denotes the c-nilpotent multiplier of \(G\). This implies that \(\exp(M(G))\) divides \(\exp(G)\) for all finite \(p\)-groups of class at most \(p-1\). Moreover, we show that our result is an improvement of some previous bounds for the exponent of \(M^{(c)}(G)\) given by M. R. Jones, G. Ellis and P. Moravec in some cases.</description><subject>Multipliers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi80KgkAURocgSMp3uNCmFsJ0J9N1orWJFrVLELERR2Rmmh_o8VPqAVp9HM75ZiRAxnZRukdckNDanlKKhwTjmAXkcZVQQ6ZkzxvnDQfVjnxUXj6hVQZcxyF_ayW5dJOb-NZ03sDFD07oQXDz_RRCCseh3OhyG52M8npF5m09WB7-dknWRX7PzpE26uW5dVWvvJGjqpCmLEkQccf-qz5XVEDl</recordid><startdate>20101111</startdate><enddate>20101111</enddate><creator>Mashayekhy, Berooz</creator><creator>Hokmabadi, Azam</creator><creator>Mohammadzadeh, Fahimeh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20101111</creationdate><title>On a Conjecture of a Bound for the Exponent of the Schur Multiplier of a Finite \(p\)-Group</title><author>Mashayekhy, Berooz ; Hokmabadi, Azam ; Mohammadzadeh, Fahimeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20837722213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Multipliers</topic><toplevel>online_resources</toplevel><creatorcontrib>Mashayekhy, Berooz</creatorcontrib><creatorcontrib>Hokmabadi, Azam</creatorcontrib><creatorcontrib>Mohammadzadeh, Fahimeh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mashayekhy, Berooz</au><au>Hokmabadi, Azam</au><au>Mohammadzadeh, Fahimeh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On a Conjecture of a Bound for the Exponent of the Schur Multiplier of a Finite \(p\)-Group</atitle><jtitle>arXiv.org</jtitle><date>2010-11-11</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>Let \(G\) be a \(p\)-group of nilpotency class \(k\) with finite exponent \(\exp(G)\) and let \(m=\lfloor\log_pk\rfloor\). We show that \(\exp(M^{(c)}(G))\) divides \(\exp(G)p^{m(k-1)}\), for all \(c\geq1\), where \(M^{(c)}(G)\) denotes the c-nilpotent multiplier of \(G\). This implies that \(\exp(M(G))\) divides \(\exp(G)\) for all finite \(p\)-groups of class at most \(p-1\). Moreover, we show that our result is an improvement of some previous bounds for the exponent of \(M^{(c)}(G)\) given by M. R. Jones, G. Ellis and P. Moravec in some cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083772221
source Publicly Available Content Database
subjects Multipliers
title On a Conjecture of a Bound for the Exponent of the Schur Multiplier of a Finite \(p\)-Group
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20a%20Conjecture%20of%20a%20Bound%20for%20the%20Exponent%20of%20the%20Schur%20Multiplier%20of%20a%20Finite%20%5C(p%5C)-Group&rft.jtitle=arXiv.org&rft.au=Mashayekhy,%20Berooz&rft.date=2010-11-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083772221%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20837722213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083772221&rft_id=info:pmid/&rfr_iscdi=true