Loading…
Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes
Some new relations on skew Schur function differences are established both combinatorially using Sch\"utzenberger's jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive....
Saved in:
Published in: | arXiv.org 2007-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | King, Ronald C Welsh, Trevor A van Willigenburg, Stephanie J |
description | Some new relations on skew Schur function differences are established both combinatorially using Sch\"utzenberger's jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083782939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083782939</sourcerecordid><originalsourceid>FETCH-proquest_journals_20837829393</originalsourceid><addsrcrecordid>eNqNy0EKwjAUBNAgCBbtHT64LsTE2nYtinvdlzRNMLUkMT9RvL0WPYCrGXgzM5IxzjdFvWVsQXLEgVLKdhUrS56R_iyvKYB3aKJ5mPgCpwFv6glf0MnKaJyF3mitgrJSIQjbg_B-NFJMhhAdBNN1U51sunYqRJCjQFS4InMtRlT5L5dkfTxc9qfCB3dPCmM7uBTsh1pGa17VrOEN_2_1Bpc7Rz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083782939</pqid></control><display><type>article</type><title>Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes</title><source>Publicly Available Content (ProQuest)</source><creator>King, Ronald C ; Welsh, Trevor A ; van Willigenburg, Stephanie J</creator><creatorcontrib>King, Ronald C ; Welsh, Trevor A ; van Willigenburg, Stephanie J</creatorcontrib><description>Some new relations on skew Schur function differences are established both combinatorially using Sch\"utzenberger's jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2007-12</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/0706.3253.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083782939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>King, Ronald C</creatorcontrib><creatorcontrib>Welsh, Trevor A</creatorcontrib><creatorcontrib>van Willigenburg, Stephanie J</creatorcontrib><title>Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes</title><title>arXiv.org</title><description>Some new relations on skew Schur function differences are established both combinatorially using Sch\"utzenberger's jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy0EKwjAUBNAgCBbtHT64LsTE2nYtinvdlzRNMLUkMT9RvL0WPYCrGXgzM5IxzjdFvWVsQXLEgVLKdhUrS56R_iyvKYB3aKJ5mPgCpwFv6glf0MnKaJyF3mitgrJSIQjbg_B-NFJMhhAdBNN1U51sunYqRJCjQFS4InMtRlT5L5dkfTxc9qfCB3dPCmM7uBTsh1pGa17VrOEN_2_1Bpc7Rz0</recordid><startdate>20071214</startdate><enddate>20071214</enddate><creator>King, Ronald C</creator><creator>Welsh, Trevor A</creator><creator>van Willigenburg, Stephanie J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20071214</creationdate><title>Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes</title><author>King, Ronald C ; Welsh, Trevor A ; van Willigenburg, Stephanie J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20837829393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>King, Ronald C</creatorcontrib><creatorcontrib>Welsh, Trevor A</creatorcontrib><creatorcontrib>van Willigenburg, Stephanie J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Ronald C</au><au>Welsh, Trevor A</au><au>van Willigenburg, Stephanie J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes</atitle><jtitle>arXiv.org</jtitle><date>2007-12-14</date><risdate>2007</risdate><eissn>2331-8422</eissn><abstract>Some new relations on skew Schur function differences are established both combinatorially using Sch\"utzenberger's jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2007-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083782939 |
source | Publicly Available Content (ProQuest) |
title | Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Schur%20positivity%20of%20skew%20Schur%20function%20differences%20and%20applications%20to%20ribbons%20and%20Schubert%20classes&rft.jtitle=arXiv.org&rft.au=King,%20Ronald%20C&rft.date=2007-12-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083782939%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20837829393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083782939&rft_id=info:pmid/&rfr_iscdi=true |