Loading…

Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes

Some new relations on skew Schur function differences are established both combinatorially using Sch\"utzenberger's jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive....

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2007-12
Main Authors: King, Ronald C, Welsh, Trevor A, van Willigenburg, Stephanie J
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator King, Ronald C
Welsh, Trevor A
van Willigenburg, Stephanie J
description Some new relations on skew Schur function differences are established both combinatorially using Sch\"utzenberger's jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083782939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083782939</sourcerecordid><originalsourceid>FETCH-proquest_journals_20837829393</originalsourceid><addsrcrecordid>eNqNy0EKwjAUBNAgCBbtHT64LsTE2nYtinvdlzRNMLUkMT9RvL0WPYCrGXgzM5IxzjdFvWVsQXLEgVLKdhUrS56R_iyvKYB3aKJ5mPgCpwFv6glf0MnKaJyF3mitgrJSIQjbg_B-NFJMhhAdBNN1U51sunYqRJCjQFS4InMtRlT5L5dkfTxc9qfCB3dPCmM7uBTsh1pGa17VrOEN_2_1Bpc7Rz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083782939</pqid></control><display><type>article</type><title>Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes</title><source>Publicly Available Content (ProQuest)</source><creator>King, Ronald C ; Welsh, Trevor A ; van Willigenburg, Stephanie J</creator><creatorcontrib>King, Ronald C ; Welsh, Trevor A ; van Willigenburg, Stephanie J</creatorcontrib><description>Some new relations on skew Schur function differences are established both combinatorially using Sch\"utzenberger's jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2007-12</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/0706.3253.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083782939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>King, Ronald C</creatorcontrib><creatorcontrib>Welsh, Trevor A</creatorcontrib><creatorcontrib>van Willigenburg, Stephanie J</creatorcontrib><title>Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes</title><title>arXiv.org</title><description>Some new relations on skew Schur function differences are established both combinatorially using Sch\"utzenberger's jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy0EKwjAUBNAgCBbtHT64LsTE2nYtinvdlzRNMLUkMT9RvL0WPYCrGXgzM5IxzjdFvWVsQXLEgVLKdhUrS56R_iyvKYB3aKJ5mPgCpwFv6glf0MnKaJyF3mitgrJSIQjbg_B-NFJMhhAdBNN1U51sunYqRJCjQFS4InMtRlT5L5dkfTxc9qfCB3dPCmM7uBTsh1pGa17VrOEN_2_1Bpc7Rz0</recordid><startdate>20071214</startdate><enddate>20071214</enddate><creator>King, Ronald C</creator><creator>Welsh, Trevor A</creator><creator>van Willigenburg, Stephanie J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20071214</creationdate><title>Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes</title><author>King, Ronald C ; Welsh, Trevor A ; van Willigenburg, Stephanie J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20837829393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>King, Ronald C</creatorcontrib><creatorcontrib>Welsh, Trevor A</creatorcontrib><creatorcontrib>van Willigenburg, Stephanie J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Ronald C</au><au>Welsh, Trevor A</au><au>van Willigenburg, Stephanie J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes</atitle><jtitle>arXiv.org</jtitle><date>2007-12-14</date><risdate>2007</risdate><eissn>2331-8422</eissn><abstract>Some new relations on skew Schur function differences are established both combinatorially using Sch\"utzenberger's jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2007-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083782939
source Publicly Available Content (ProQuest)
title Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Schur%20positivity%20of%20skew%20Schur%20function%20differences%20and%20applications%20to%20ribbons%20and%20Schubert%20classes&rft.jtitle=arXiv.org&rft.au=King,%20Ronald%20C&rft.date=2007-12-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083782939%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20837829393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083782939&rft_id=info:pmid/&rfr_iscdi=true