Loading…

Teleportation of entanglement over 143 km

As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum computing. A unique solution is the teleportation of a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-02
Main Authors: Herbst, Thomas, Scheidl, Thomas, Fink, Matthias, Handsteiner, Johannes, Wittmann, Bernhard, Ursin, Rupert, Zeilinger, Anton
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Herbst, Thomas
Scheidl, Thomas
Fink, Matthias
Handsteiner, Johannes
Wittmann, Bernhard
Ursin, Rupert
Zeilinger, Anton
description As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e. entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 standard deviations beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Since our results already allow for efficient implementation of entanglement purification, we anticipate our assay to lay the ground for a fully-fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.
doi_str_mv 10.48550/arxiv.1403.0009
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083787782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083787782</sourcerecordid><originalsourceid>FETCH-LOGICAL-a512-755c87cddaaf0ff65f917dfa21ecba64c4fe2c6f801d3d1222fe9fb3adf183a3</originalsourceid><addsrcrecordid>eNotjU1LAzEURYMgWGr3LgOuXMyYvJdMMkspfhQKLuy-vCZ50jqd1My0-PMd0NU9nMW5QtxpVRtvrXqk8rO_1NoorJVS7ZWYAaKuvAG4EYthOEwWGgfW4kw8bFKXTrmMNO5zLzPL1I_Uf3bpOIHMl1SkNii_jrfimqkb0uJ_5-Lj5XmzfKvW76-r5dO6IquhctYG70KMRKyYG8utdpEJdAo7akwwnCA07JWOGDUAcGp5hxRZeySci_u_6qnk73Maxu0hn0s_HW5BeXTeOQ_4C41NQp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083787782</pqid></control><display><type>article</type><title>Teleportation of entanglement over 143 km</title><source>Publicly Available Content Database</source><creator>Herbst, Thomas ; Scheidl, Thomas ; Fink, Matthias ; Handsteiner, Johannes ; Wittmann, Bernhard ; Ursin, Rupert ; Zeilinger, Anton</creator><creatorcontrib>Herbst, Thomas ; Scheidl, Thomas ; Fink, Matthias ; Handsteiner, Johannes ; Wittmann, Bernhard ; Ursin, Rupert ; Zeilinger, Anton</creatorcontrib><description>As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e. entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 standard deviations beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Since our results already allow for efficient implementation of entanglement purification, we anticipate our assay to lay the ground for a fully-fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1403.0009</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cloning ; Cloud computing ; Nodes ; Photons ; Purification ; Quantum computing ; Quantum entanglement ; Quantum mechanics ; Quantum phenomena ; Quantum teleportation ; Quantum theory ; Teleportation ; Turbulent flow</subject><ispartof>arXiv.org, 2015-02</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083787782?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Herbst, Thomas</creatorcontrib><creatorcontrib>Scheidl, Thomas</creatorcontrib><creatorcontrib>Fink, Matthias</creatorcontrib><creatorcontrib>Handsteiner, Johannes</creatorcontrib><creatorcontrib>Wittmann, Bernhard</creatorcontrib><creatorcontrib>Ursin, Rupert</creatorcontrib><creatorcontrib>Zeilinger, Anton</creatorcontrib><title>Teleportation of entanglement over 143 km</title><title>arXiv.org</title><description>As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e. entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 standard deviations beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Since our results already allow for efficient implementation of entanglement purification, we anticipate our assay to lay the ground for a fully-fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.</description><subject>Cloning</subject><subject>Cloud computing</subject><subject>Nodes</subject><subject>Photons</subject><subject>Purification</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><subject>Quantum phenomena</subject><subject>Quantum teleportation</subject><subject>Quantum theory</subject><subject>Teleportation</subject><subject>Turbulent flow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEURYMgWGr3LgOuXMyYvJdMMkspfhQKLuy-vCZ50jqd1My0-PMd0NU9nMW5QtxpVRtvrXqk8rO_1NoorJVS7ZWYAaKuvAG4EYthOEwWGgfW4kw8bFKXTrmMNO5zLzPL1I_Uf3bpOIHMl1SkNii_jrfimqkb0uJ_5-Lj5XmzfKvW76-r5dO6IquhctYG70KMRKyYG8utdpEJdAo7akwwnCA07JWOGDUAcGp5hxRZeySci_u_6qnk73Maxu0hn0s_HW5BeXTeOQ_4C41NQp0</recordid><startdate>20150206</startdate><enddate>20150206</enddate><creator>Herbst, Thomas</creator><creator>Scheidl, Thomas</creator><creator>Fink, Matthias</creator><creator>Handsteiner, Johannes</creator><creator>Wittmann, Bernhard</creator><creator>Ursin, Rupert</creator><creator>Zeilinger, Anton</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150206</creationdate><title>Teleportation of entanglement over 143 km</title><author>Herbst, Thomas ; Scheidl, Thomas ; Fink, Matthias ; Handsteiner, Johannes ; Wittmann, Bernhard ; Ursin, Rupert ; Zeilinger, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a512-755c87cddaaf0ff65f917dfa21ecba64c4fe2c6f801d3d1222fe9fb3adf183a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cloning</topic><topic>Cloud computing</topic><topic>Nodes</topic><topic>Photons</topic><topic>Purification</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><topic>Quantum phenomena</topic><topic>Quantum teleportation</topic><topic>Quantum theory</topic><topic>Teleportation</topic><topic>Turbulent flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Herbst, Thomas</creatorcontrib><creatorcontrib>Scheidl, Thomas</creatorcontrib><creatorcontrib>Fink, Matthias</creatorcontrib><creatorcontrib>Handsteiner, Johannes</creatorcontrib><creatorcontrib>Wittmann, Bernhard</creatorcontrib><creatorcontrib>Ursin, Rupert</creatorcontrib><creatorcontrib>Zeilinger, Anton</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Materials Science &amp; Engineering</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herbst, Thomas</au><au>Scheidl, Thomas</au><au>Fink, Matthias</au><au>Handsteiner, Johannes</au><au>Wittmann, Bernhard</au><au>Ursin, Rupert</au><au>Zeilinger, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teleportation of entanglement over 143 km</atitle><jtitle>arXiv.org</jtitle><date>2015-02-06</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e. entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 standard deviations beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Since our results already allow for efficient implementation of entanglement purification, we anticipate our assay to lay the ground for a fully-fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1403.0009</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083787782
source Publicly Available Content Database
subjects Cloning
Cloud computing
Nodes
Photons
Purification
Quantum computing
Quantum entanglement
Quantum mechanics
Quantum phenomena
Quantum teleportation
Quantum theory
Teleportation
Turbulent flow
title Teleportation of entanglement over 143 km
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T15%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teleportation%20of%20entanglement%20over%20143%20km&rft.jtitle=arXiv.org&rft.au=Herbst,%20Thomas&rft.date=2015-02-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1403.0009&rft_dat=%3Cproquest%3E2083787782%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a512-755c87cddaaf0ff65f917dfa21ecba64c4fe2c6f801d3d1222fe9fb3adf183a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083787782&rft_id=info:pmid/&rfr_iscdi=true