Loading…
Discretization of Temporal Data: A Survey
In real world, the huge amount of temporal data is to be processed in many application areas such as scientific, financial, network monitoring, sensor data analysis. Data mining techniques are primarily oriented to handle discrete features. In the case of temporal data the time plays an important ro...
Saved in:
Published in: | arXiv.org 2014-02 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chaudhari, P Rana, D P Mehta, R G Mistry, N J Raghuwanshi, M M |
description | In real world, the huge amount of temporal data is to be processed in many application areas such as scientific, financial, network monitoring, sensor data analysis. Data mining techniques are primarily oriented to handle discrete features. In the case of temporal data the time plays an important role on the characteristics of data. To consider this effect, the data discretization techniques have to consider the time while processing to resolve the issue by finding the intervals of data which are more concise and precise with respect to time. Here, this research is reviewing different data discretization techniques used in temporal data applications according to the inclusion or exclusion of: class label, temporal order of the data and handling of stream data to open the research direction for temporal data discretization to improve the performance of data mining technique. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083807921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083807921</sourcerecordid><originalsourceid>FETCH-proquest_journals_20838079213</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdMksTi5KLcmsSizJzM9TyE9TCEnNLcgvSsxRcEksSbRScFQILi0qS63kYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwMLYwsDc0sjQ2PiVAEAtKMwBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083807921</pqid></control><display><type>article</type><title>Discretization of Temporal Data: A Survey</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Chaudhari, P ; Rana, D P ; Mehta, R G ; Mistry, N J ; Raghuwanshi, M M</creator><creatorcontrib>Chaudhari, P ; Rana, D P ; Mehta, R G ; Mistry, N J ; Raghuwanshi, M M</creatorcontrib><description>In real world, the huge amount of temporal data is to be processed in many application areas such as scientific, financial, network monitoring, sensor data analysis. Data mining techniques are primarily oriented to handle discrete features. In the case of temporal data the time plays an important role on the characteristics of data. To consider this effect, the data discretization techniques have to consider the time while processing to resolve the issue by finding the intervals of data which are more concise and precise with respect to time. Here, this research is reviewing different data discretization techniques used in temporal data applications according to the inclusion or exclusion of: class label, temporal order of the data and handling of stream data to open the research direction for temporal data discretization to improve the performance of data mining technique.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data analysis ; Data mining ; Discretization ; Performance enhancement</subject><ispartof>arXiv.org, 2014-02</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083807921?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Chaudhari, P</creatorcontrib><creatorcontrib>Rana, D P</creatorcontrib><creatorcontrib>Mehta, R G</creatorcontrib><creatorcontrib>Mistry, N J</creatorcontrib><creatorcontrib>Raghuwanshi, M M</creatorcontrib><title>Discretization of Temporal Data: A Survey</title><title>arXiv.org</title><description>In real world, the huge amount of temporal data is to be processed in many application areas such as scientific, financial, network monitoring, sensor data analysis. Data mining techniques are primarily oriented to handle discrete features. In the case of temporal data the time plays an important role on the characteristics of data. To consider this effect, the data discretization techniques have to consider the time while processing to resolve the issue by finding the intervals of data which are more concise and precise with respect to time. Here, this research is reviewing different data discretization techniques used in temporal data applications according to the inclusion or exclusion of: class label, temporal order of the data and handling of stream data to open the research direction for temporal data discretization to improve the performance of data mining technique.</description><subject>Data analysis</subject><subject>Data mining</subject><subject>Discretization</subject><subject>Performance enhancement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdMksTi5KLcmsSizJzM9TyE9TCEnNLcgvSsxRcEksSbRScFQILi0qS63kYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwMLYwsDc0sjQ2PiVAEAtKMwBg</recordid><startdate>20140218</startdate><enddate>20140218</enddate><creator>Chaudhari, P</creator><creator>Rana, D P</creator><creator>Mehta, R G</creator><creator>Mistry, N J</creator><creator>Raghuwanshi, M M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140218</creationdate><title>Discretization of Temporal Data: A Survey</title><author>Chaudhari, P ; Rana, D P ; Mehta, R G ; Mistry, N J ; Raghuwanshi, M M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20838079213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Data analysis</topic><topic>Data mining</topic><topic>Discretization</topic><topic>Performance enhancement</topic><toplevel>online_resources</toplevel><creatorcontrib>Chaudhari, P</creatorcontrib><creatorcontrib>Rana, D P</creatorcontrib><creatorcontrib>Mehta, R G</creatorcontrib><creatorcontrib>Mistry, N J</creatorcontrib><creatorcontrib>Raghuwanshi, M M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhari, P</au><au>Rana, D P</au><au>Mehta, R G</au><au>Mistry, N J</au><au>Raghuwanshi, M M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Discretization of Temporal Data: A Survey</atitle><jtitle>arXiv.org</jtitle><date>2014-02-18</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>In real world, the huge amount of temporal data is to be processed in many application areas such as scientific, financial, network monitoring, sensor data analysis. Data mining techniques are primarily oriented to handle discrete features. In the case of temporal data the time plays an important role on the characteristics of data. To consider this effect, the data discretization techniques have to consider the time while processing to resolve the issue by finding the intervals of data which are more concise and precise with respect to time. Here, this research is reviewing different data discretization techniques used in temporal data applications according to the inclusion or exclusion of: class label, temporal order of the data and handling of stream data to open the research direction for temporal data discretization to improve the performance of data mining technique.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083807921 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Data analysis Data mining Discretization Performance enhancement |
title | Discretization of Temporal Data: A Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Discretization%20of%20Temporal%20Data:%20A%20Survey&rft.jtitle=arXiv.org&rft.au=Chaudhari,%20P&rft.date=2014-02-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083807921%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20838079213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083807921&rft_id=info:pmid/&rfr_iscdi=true |