Loading…

Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap

This paper investigates the use of bootstrap-based bias correction of semi-parametric estimators of the long memory parameter in fractionally integrated processes. The re-sampling method involves the application of the sieve bootstrap to data pre-filtered by a preliminary semi-parametric estimate of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-02
Main Authors: Poskitt, D S, Martin, Gael M, Grose, Simone D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Poskitt, D S
Martin, Gael M
Grose, Simone D
description This paper investigates the use of bootstrap-based bias correction of semi-parametric estimators of the long memory parameter in fractionally integrated processes. The re-sampling method involves the application of the sieve bootstrap to data pre-filtered by a preliminary semi-parametric estimate of the long memory parameter. Theoretical justification for using the bootstrap techniques to bias adjust log-periodogram and semi-parametric local Whittle estimators of the memory parameter is provided. Simulation evidence comparing the performance of the bootstrap bias correction with analytical bias correction techniques is also presented. The bootstrap method is shown to produce notable bias reductions, in particular when applied to an estimator for which analytical adjustments have already been used. The empirical coverage of confidence intervals based on the bias-adjusted estimators is very close to the nominal, for a reasonably large sample size, more so than for the comparable analytically adjusted estimators. The precision of inferences (as measured by interval length) is also greater when the bootstrap is used to bias correct rather than analytical adjustments.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083808921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083808921</sourcerecordid><originalsourceid>FETCH-proquest_journals_20838089213</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7oLMwta10No0NBVNBRRn7WRP1sm0L_Pg_9gE7v4XknLBBSxpFaCTFjoXMV51ysNyJJZMDuqdEOLlj0D2-oBSrhSO0TTtiQ_cBZW92gRwuZ86bRnqyDwWjwL4Szxag09ahYwNXggJASeeet7hZsWuraYfjrnC332W13iDpL7x6dzyvqbTtSLriSiqutiOV_1xcbHkFC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083808921</pqid></control><display><type>article</type><title>Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap</title><source>Publicly Available Content Database</source><creator>Poskitt, D S ; Martin, Gael M ; Grose, Simone D</creator><creatorcontrib>Poskitt, D S ; Martin, Gael M ; Grose, Simone D</creatorcontrib><description>This paper investigates the use of bootstrap-based bias correction of semi-parametric estimators of the long memory parameter in fractionally integrated processes. The re-sampling method involves the application of the sieve bootstrap to data pre-filtered by a preliminary semi-parametric estimate of the long memory parameter. Theoretical justification for using the bootstrap techniques to bias adjust log-periodogram and semi-parametric local Whittle estimators of the memory parameter is provided. Simulation evidence comparing the performance of the bootstrap bias correction with analytical bias correction techniques is also presented. The bootstrap method is shown to produce notable bias reductions, in particular when applied to an estimator for which analytical adjustments have already been used. The empirical coverage of confidence intervals based on the bias-adjusted estimators is very close to the nominal, for a reasonably large sample size, more so than for the comparable analytically adjusted estimators. The precision of inferences (as measured by interval length) is also greater when the bootstrap is used to bias correct rather than analytical adjustments.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bias ; Confidence intervals ; Empirical analysis ; Estimators ; Mathematical analysis ; Parameter estimation ; Process parameters ; Statistical analysis ; Statistical methods</subject><ispartof>arXiv.org, 2014-02</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083808921?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25735,36994,44572</link.rule.ids></links><search><creatorcontrib>Poskitt, D S</creatorcontrib><creatorcontrib>Martin, Gael M</creatorcontrib><creatorcontrib>Grose, Simone D</creatorcontrib><title>Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap</title><title>arXiv.org</title><description>This paper investigates the use of bootstrap-based bias correction of semi-parametric estimators of the long memory parameter in fractionally integrated processes. The re-sampling method involves the application of the sieve bootstrap to data pre-filtered by a preliminary semi-parametric estimate of the long memory parameter. Theoretical justification for using the bootstrap techniques to bias adjust log-periodogram and semi-parametric local Whittle estimators of the memory parameter is provided. Simulation evidence comparing the performance of the bootstrap bias correction with analytical bias correction techniques is also presented. The bootstrap method is shown to produce notable bias reductions, in particular when applied to an estimator for which analytical adjustments have already been used. The empirical coverage of confidence intervals based on the bias-adjusted estimators is very close to the nominal, for a reasonably large sample size, more so than for the comparable analytically adjusted estimators. The precision of inferences (as measured by interval length) is also greater when the bootstrap is used to bias correct rather than analytical adjustments.</description><subject>Bias</subject><subject>Confidence intervals</subject><subject>Empirical analysis</subject><subject>Estimators</subject><subject>Mathematical analysis</subject><subject>Parameter estimation</subject><subject>Process parameters</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7oLMwta10No0NBVNBRRn7WRP1sm0L_Pg_9gE7v4XknLBBSxpFaCTFjoXMV51ysNyJJZMDuqdEOLlj0D2-oBSrhSO0TTtiQ_cBZW92gRwuZ86bRnqyDwWjwL4Szxag09ahYwNXggJASeeet7hZsWuraYfjrnC332W13iDpL7x6dzyvqbTtSLriSiqutiOV_1xcbHkFC</recordid><startdate>20140227</startdate><enddate>20140227</enddate><creator>Poskitt, D S</creator><creator>Martin, Gael M</creator><creator>Grose, Simone D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140227</creationdate><title>Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap</title><author>Poskitt, D S ; Martin, Gael M ; Grose, Simone D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20838089213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bias</topic><topic>Confidence intervals</topic><topic>Empirical analysis</topic><topic>Estimators</topic><topic>Mathematical analysis</topic><topic>Parameter estimation</topic><topic>Process parameters</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Poskitt, D S</creatorcontrib><creatorcontrib>Martin, Gael M</creatorcontrib><creatorcontrib>Grose, Simone D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poskitt, D S</au><au>Martin, Gael M</au><au>Grose, Simone D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap</atitle><jtitle>arXiv.org</jtitle><date>2014-02-27</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>This paper investigates the use of bootstrap-based bias correction of semi-parametric estimators of the long memory parameter in fractionally integrated processes. The re-sampling method involves the application of the sieve bootstrap to data pre-filtered by a preliminary semi-parametric estimate of the long memory parameter. Theoretical justification for using the bootstrap techniques to bias adjust log-periodogram and semi-parametric local Whittle estimators of the memory parameter is provided. Simulation evidence comparing the performance of the bootstrap bias correction with analytical bias correction techniques is also presented. The bootstrap method is shown to produce notable bias reductions, in particular when applied to an estimator for which analytical adjustments have already been used. The empirical coverage of confidence intervals based on the bias-adjusted estimators is very close to the nominal, for a reasonably large sample size, more so than for the comparable analytically adjusted estimators. The precision of inferences (as measured by interval length) is also greater when the bootstrap is used to bias correct rather than analytical adjustments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083808921
source Publicly Available Content Database
subjects Bias
Confidence intervals
Empirical analysis
Estimators
Mathematical analysis
Parameter estimation
Process parameters
Statistical analysis
Statistical methods
title Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bias%20Reduction%20of%20Long%20Memory%20Parameter%20Estimators%20via%20the%20Pre-filtered%20Sieve%20Bootstrap&rft.jtitle=arXiv.org&rft.au=Poskitt,%20D%20S&rft.date=2014-02-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083808921%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20838089213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083808921&rft_id=info:pmid/&rfr_iscdi=true