Loading…
Artificial Mutation inspired Hyper-heuristic for Runtime Usage of Multi-objective Algorithms
In the last years, multi-objective evolutionary algorithms (MOEA) have been applied to different software engineering problems where many conflicting objectives have to be optimized simultaneously. In theory, evolutionary algorithms feature a nice property for runtime optimization as they can provid...
Saved in:
Published in: | arXiv.org 2014-02 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the last years, multi-objective evolutionary algorithms (MOEA) have been applied to different software engineering problems where many conflicting objectives have to be optimized simultaneously. In theory, evolutionary algorithms feature a nice property for runtime optimization as they can provide a solution in any execution time. In practice, based on a Darwinian inspired natural selection, these evolutionary algorithms produce many deadborn solutions whose computation results in a computational resources wastage: natural selection is naturally slow. In this paper, we reconsider this founding analogy to accelerate convergence of MOEA, by looking at modern biology studies: artificial selection has been used to achieve an anticipated specific purpose instead of only relying on crossover and natural selection (i.e., Muller et al [18] research on artificial mutation of fruits with X-Ray). Putting aside the analogy with natural selection , the present paper proposes an hyper-heuristic for MOEA algorithms named Sputnik 1 that uses artificial selective mutation to improve the convergence speed of MOEA. Sputnik leverages the past history of mutation efficiency to select the most relevant mutations to perform. We evaluate Sputnik on a cloud-reasoning engine, which drives on-demand provisioning while considering conflicting performance and cost objectives. We have conducted experiments to highlight the significant performance improvement of Sputnik in terms of resolution time. |
---|---|
ISSN: | 2331-8422 |